精英家教网 > 初中数学 > 题目详情
(2005•湖州)如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于AB,AC于点E,F.若=6,则△ABC的边长为( )

A.
B.
C.
D.1
【答案】分析:过点A作直线PQ∥BC,延长BE交PQ于点P;延长CF,交PQ于点Q.证明△BCE∽△PAE,△CBF∽△QAF,
构造+与BC的关系求解.
解答:解:过点A作直线PQ∥BC,延长BD交PQ于点P;延长CD,交PQ于点Q.
∵PQ∥BC,
∴△PQD∽△BCD,
∵点D在△ABC的中位线上,
∴△PQD与△BCD的高相等,
∴△PQD≌△BCD,
∴PQ=BC,
∵AE=AC-CE,AF=AB-BF,
在△BCE与△PAE中,∠PAE=∠ACB,∠APE=∠CBE,
∴△BCE∽△PAE,=…①
同理:△CBF∽△QAF,=…②
①+②,得:+=
+=3,
又∵=6,AC=AB,
∴△ABC的边长=
故选C.
点评:本题综合考查了三角形中位线定理及三角形的相似的知识,解题的关键是作平行线构造相似,从而得到已知与所求线段的关系.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2005•湖州)如图,已知直角坐标系内的梯形AOBC(O为原点),AC∥OB,OC⊥BC,OA=2,AC,OB的长是关于x的方程x2-(k+2)x+5=0的两个根,且S△AOC:S△BOC=1:5.
(1)填空:0C=______

查看答案和解析>>

科目:初中数学 来源:2005年浙江省湖州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•湖州)如图,已知直角坐标系内的梯形AOBC(O为原点),AC∥OB,OC⊥BC,OA=2,AC,OB的长是关于x的方程x2-(k+2)x+5=0的两个根,且S△AOC:S△BOC=1:5.
(1)填空:0C=______

查看答案和解析>>

科目:初中数学 来源:2005年浙江省湖州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•湖州)如图,四边形ABCD和BEFG均为正方形,则=______

查看答案和解析>>

科目:初中数学 来源:2005年浙江省湖州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•湖州)如图,在平行四边形ABCD中,∠ABC和∠ADC的平分线分别交对边于点E、F,交四边形的对角线AC于点G、H.求证:AH=CG.

查看答案和解析>>

同步练习册答案