精英家教网 > 初中数学 > 题目详情
(2013•杭州一模)在直角梯形ABCD中,AB∥CD,∠ABC=90°,∠A=60°,AB=2CD,E,F分别为AB,AD的中点,连结EF,EC,BF,CF.
(1)求证△CBE≌△CFE;
(2)若CD=a,求四边形BCFE的面积.
分析:连接DE,求出CD=BE,得出矩形BEDC,推出∠DEB=90°,根据直角三角形斜边上中线性质得出FE=AF,得出等边三角形EFA,求出EF=AE=BE,∠EFA=60°,求出∠DFC=30°,求出∠CFE=90°,根据HL证出直角三角形全等即可;
(2)根据勾股定理求出DE,BC,求出△CBE面积,即可求出答案.
解答:(1)证明:连接DE,
∵E为AB的中点,
∴AB=2AE=2BE,
∵AB=2DC,
∴CD=BE,
∵CD∥AB,∠CBA=90°,
∴四边形CBED是矩形,
∵F为AD中点,∠DEA=90°,
∴EF=AF,
∵∠A=60°,
∴△AEF是正三角形,
∴AE=EF=AF,∠EFA=60°,
∵AE=BE,DF=AF
∴BE=EF=AF,CD=DF,
∴∠CFE=90°=∠CBE,
∵CD∥AB,
∴∠CDF=180°-∠A=120°,
∴∠DFC=30°,
∴∠CFE=90°=∠CBE,
∵在Rt△CBE和Rt△CFE中
CE=CE
BE=EF

∴Rt△CBE≌Rt△CFE(HL);

(2)解:∵CD=a,
∴AE=BE=a,
∵∠A=60°,
BC=DE=
3
a

S△BCE=
3
2
a2

∴S四边形BCFE=2S△BCE=
3
a2
点评:本题考查了梯形性质,矩形的性质和判定,等边三角形的性质和判定,平行线的性质,三角形的内角和定理,等腰三角形的性质,勾股定理等知识点的应用,主要考查学生综合运用性质进行推理的能力,题目综合性比较强,难度偏大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•杭州一模)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=DC,点E在对角线BD上,作∠ECF=90°,连接DF,且满足CF=EC.
(1)求证:BD⊥DF.
(2)当BC2=DE•DB时,试判断四边形DECF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州一模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则sinC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州一模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE-ED-DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图;
(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:
①当0<t≤5时,y=
4
5
t2;②当t=6秒时,△ABE≌△PQB;③cos∠CBE=
1
2
;④当t=
29
2
秒时,△ABE∽△QBP;
其中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州一模)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):

根据统计图表中的信息,解答下列问题:
(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有
10
10
人,男生最喜欢“乒乓球”项目的有
20
20
人;
(2)请将条形统计图补充完整;
(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州一模)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是
4
4

查看答案和解析>>

同步练习册答案