精英家教网 > 初中数学 > 题目详情
如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4、9和49,则△ABC面积是( )

A.144
B.132
C.62
D.186
【答案】分析:根据相似三角形的面积比是相似比的平方,先求出相似比.再根据平行四边形的性质及相似三角形的性质得到BC:DM=6:1,即S△ABC:S△FDM=36:1,从而得到△ABC面积.
解答:解:过M作BC的平行线交AB、AC于D、E,
过M作AC的平行线交AB、BC于F、H,
过M作AB的平行线交AC、BC于I、G,
因为△1、△2、△3的面积比为4:9:49,
所以他们对应边边长的比为2:3:7,
又因为四边形BDMG与四边形CEMH为平行四边形,
所以DM=BG,EM=CH,
设DM为2x,则ME=3x,GH=7x,
所以BC=BG+GH+CH=DM+GH+ME=2x+3x+7x=12x,
所以BC:DM=12x:2x=6:1,
由面积比等于相似比的平方故可得出:S△ABC:S△FDM=36:1,
所以S△ABC=36×S△FDM=36×4=144.
故选A.
点评:本题考查了平行线的性质,平行四边形的性质及相似三角形的性质.熟悉相似三角形的性质:相似三角形的面积比是相似比的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点F是△ABC外接圆
BC
的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,点P是△ABC内的一点,有下列结论:①∠BPC>∠A;②∠BPC一定是钝角;③∠BPC=∠A+∠ABP+∠ACP.其中正确的结论共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点O是△ABC内任意一点,G、D、E分别为AC、OA、OB的中点,F为BC上一动点,问四边形GDEF能否为平行四边形?若可以,指出F点位置,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花模拟)如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5,GC=4,GB=3,将△ADG绕点D顺时针方向旋转180°得到△BDE,则△EBC的面积=
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•天津)如图,点I是△ABC的内心,AI交BC边于D,交△ABC的外接圆于点E.
求证:(1)IE=BE;
      (2)IE是AE和DE的比例中项.

查看答案和解析>>

同步练习册答案