精英家教网 > 初中数学 > 题目详情
某校课外活动小组准备利用学校的一面墙,用长为30米的篱笆围成一个矩形生物苗圃园.
(1)若墙长为18米(如图所示),当垂直于墙的一边的长为多少米时,这个苗圃园的面积等于88平方米?
(2)当垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.
(1)设垂直于墙的一边的长为x米,则矩形的另一边长为(30-2x)米
由题意列方程,得:x(30-2x)=88
整理得:x2-15x+44=0
解得:x1=11,x2=4
∵0<30-2x≤18
∴6≤x<15
∴x=11
答:当垂直于墙的一边的长为11米时,这个苗圃园的面积等于88平方米.

(2)苗圃园的面积=x(30-2x)=-2(x-
15
2
2+
225
2

当x=
15
2
时,即直于墙的一边的长为7.5米时,苗圃园的面积最大,为112.5平方米.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,如图,抛物线y=-x2+bx+c与x轴,y轴分别相交于点A(-1,0),B(0,3)两点,其顶点为D
(1)求该抛物线的解析式;
(2)若抛物线与x轴另一个交点为E,求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

学校大门如图所示是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地4米高处各有一挂校名横匾用的铁环,两铁环的水平距离为6米,则该校门的高度(精确到0.1米)为(  )
A.8.9米B.9.1米C.9.2米D.9.3米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=kx+2经过点P(1,
5
2
),与x轴相交于点A;抛物线y=ax2+bx(a>0)经过点A和点P,顶点为M.
(1)求直线y=kx+2的表达式;
(2)求抛物线y=ax2+bx的表达式;
(3)设此直线与y轴相交于点B,直线BM与x轴相交于点C,点D的坐标为(
8
3
,0),试判断△ACB与△ABD是否相似,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l经过点A(4,0)和点B(0,4),且与二次函数y=ax2的图象在第一象限内相交于点P,若△AOP的面积为
9
2
,求二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是(  )
A.y=x2-x-2B.y=-
1
2
x2-
1
2
x+2
C.y=-
1
2
x2-
1
2
x+1
D.y=-x2+x+2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一位篮球运动员站在罚球线后投篮,球入篮得分.下列图象中,可以大致反映篮球出手(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为4,P是边BC上一点,QP⊥AP交DC于Q,问当点P在何位置时,△ADQ的面积最小并求出这个最小面积.

查看答案和解析>>

同步练习册答案