如图,直线y=x+3与坐标轴分别交于A,B两点,抛物线y=ax2+bx﹣3a经过点A,B,顶点为C,连接CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称.
(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形.
(1) y=﹣x2﹣2x+3, (﹣1,4); (2)证明如下.
解析试题分析:(1)先根据直线y=x+3求得点A与点B的坐标,然后代入二次函数的解析式求得其解析式,然后求得其顶点坐标即可;
(2)根据B、D关于MN对称,C(-1,4),B(0,3)求得点D的坐标,然后得到AD与BC不平行,∴四边形ABCD是梯形,再根据∠ABC=90°得到四边形ABCD是直角梯形.
试题解析:(1)∵y=x+3与坐标轴分别交与A、B两点,
∴A点坐标(﹣3,0)、B点坐标(0,3).
∵抛物线y=ax2+bx﹣3a经过A、B两点,
∴,解得.
∴抛物线解析式为:y=﹣x2﹣2x+3.
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴顶点C的坐标为(﹣1,4).
(2)∵B、D关于MN对称,C(﹣1,4),B(0,3),∴D(﹣2,3).
∵B(3,0),A(﹣3,0),
∴OA=OB.
又∠AOB=90°,
∴∠ABO=∠BAO=45°.
∵B、D关于MN对称,
∴BD⊥MN.
又∵MN⊥X轴,∴BD∥X轴.
∴∠DBA=∠BAO=45°.
∴∠DBO=∠DBA+∠ABO=45°+45°=90°.
∴∠ABC=180°﹣∠DBO=90°.
∴∠CBD=∠ABC﹣∠ABD=45°.
∵CM⊥BD,∴∠MCB=45°.
∵B,D关于MN对称,
∴∠CDM=∠CBD=45°,CD∥AB.
又∵AD与BC不平行,
∴四边形ABCD是梯形.
∵∠ABC=90°,
∴四边形ABCD是直角梯形
考点:(1)二次函数;(2)直角梯形.
科目:初中数学 来源: 题型:解答题
已知抛物线的顶点在x轴上,且与y轴交于A点. 直线经过A、B两点,点B的坐标为(3,4).
(1)求抛物线的解析式,并判断点B是否在抛物线上;
(2)如果点B在抛物线上,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x.当x为何值时,h取得最大值,求出这时的h值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,黎叔叔想用60m长的篱笆靠墙MN围成一个矩形花圃ABCD,已知墙长MN=30m.
(1)能否使矩形花圃ABCD的面积为400m2?若能,请说明围法;若不能,请说明理由.
(2)请你帮助黎叔叔设计一种围法,使矩形花圃ABCD的面积最大,并求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以抛物线顶点坐标为(m,2m-1),即x=m③,y=2m-1④.
当m的值变化时,x,y的值也随之变化,因而y的值也随x值的变化而变化.
将③代入④,得y=2x-1⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式:y=2x-1;
根据上述阅读材料提供的方法,确定点(-2m, m-1)满足的函数关系式为_______.
(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某商店以16元/支的价格进了一批钢笔,如果以20元/支的价格售出,每月可以卖出200支,而每上涨1元就少卖10支,现在商店店主希望该笔月销售利润达1350元,则每支钢笔应该上涨多少元钱?请你就该种钢笔的涨价幅度和进货量,通过计算给店主提出一些合理建议.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为:
(1)用x的代数式表示t为:t= ;当0<x≤4时, y2与x的函数关系为y2= ;当 ≤x< 时,y2=100;
(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;
(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分)
(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分)
(3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) (3分)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某玩具批发商销售每件进价为40元的玩具,市场调查发现,若以每件50元的价格销售,平均每天销售90件,单价每提高1元,平均每天就少销售3件.
(1)平均每天的销售量y(件)与销售价x(元/件)之间的函数关系式为 ;
(2)求该批发商平均每天的销售利润W(元)与销售价x(元/件)之间的函数关系式;
(3)物价部门规定每件售价不得高于55元,当每件玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在平面直角坐标系中,已知抛物线(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com