精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD中,AD=2,AB=3,AM=1,
DE
是以点A为圆心2为半径的
1
4
圆弧,
NB
是以点M为圆心2为半径的
1
4
圆弧,则图中两段弧之间的阴影部分的面积为
2
2
分析:连接MN,将扇形AED向右平移可与扇形MBN重合,则图中阴影部分的面积等于矩形AMND的面积.
解答:解:连接MN,则扇形AED的面积=扇形MBN的面积.
又∵扇形AED的面积+阴影部分的面积=扇形MBN的面积+矩形AMND的面积,
∴阴影部分的面积=矩形AMND的面积=2×1=2.
故答案为2.
点评:考查了平移的性质和矩形的性质,解题的关键是将不规则图形的面积转化为规则图形的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案