证明:(1)∵BM平分∠ABC,∠BAC=90°,MT⊥BC,
∴AM=MT.
又∵AM=AK,
∴AK=MT.
(2)∵BM平分∠ABC,
∴∠ABM=∠CBM.
∵AM=AN,
∴∠AMN=∠ANM.
又∵∠ANM=∠BND,
∴∠AMN=∠BND.
∵∠BAC=90°,
∴∠ABM+∠AMB=90°.
∴∠CBM+∠BND=90°.
∴∠BDN=90°.
∴AD⊥BC.
(3)连接PN、KM
∵BNM和BPK为⊙A的割线,
∴BN•BM=BP•BK.
∴
.
∵AK=BD,AK=MT,
∴BD=MT.
∵AD⊥BC,MT⊥BC,
∴∠ADB=∠MTC=90°.
∴∠C+∠CMT=90°.
∵∠BAC=90°,
∴∠C+∠ABC=90°.
∴∠ABC=∠CMT.
在△ABD和△CMT中,
,
∴△ABD≌△CMT.
∴AB=MC.
∵AK=AM,
∴AB+AK=MC+AM.
即BK=AC.
∴
.
分析:(1)用角平分线的性质,圆的半径相等解题;
(2)根据图中相等角,找互余关系的角,从而推出垂直关系.
(3)连接PN,MK,根据已知证明△ABD≌△CMT再根据边之间的转化即可得到结论.
点评:本题考查了角平分线的性质,直角三角形两锐角互余,圆的割线定理,全等三角形的判定,综合性强.