【题目】将正面分别写着数字,1,3,6的四张卡片(卡片除数字外,其它都相同)洗匀后,背面向上放在桌子上,从中先随机抽取一张卡片,记下卡片上的数字,不放回,再从中任取一张卡片,记下数字.
(1)请用列表或画树状图法(树状图也称树形图)中的一种方法,列出所有可能出现的结果;
(2)请计算两次摸出的卡片上的数字之和大于4的概率.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求a,k的值及点B的坐标;
(2)若点P在x轴上,且S△ACP=S△BOC,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).
(1)当t=1时,得到P1、Q1,求经过A、P1、Q1三点的抛物线解析式及对称轴l;
(2)当t为何值时,直线PQ与⊙C相切?并写出此时点P和点Q的坐标;
(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线(b,c为常数)与x轴交于点和,与y轴交于点A,点E为抛物线顶点。
(Ⅰ)当时,求点A,点E的坐标;
(Ⅱ)若顶点E在直线上,当点A位置最高时,求抛物线的解析式;
(Ⅲ)若,当满足值最小时,求b的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在以线段AB为直径的⊙O上取一点,连接AC、BC.将△ABC沿AB翻折后得到△ABD.
(1)试说明点D在⊙O上;
(2)在线段AD的延长线上取一点E,使AB2=AC·AE.求证:BE为⊙O的切线;
(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A,点C在反比例函数y=(k>0,x>0)的图象上,AB⊥x轴于点B,OC交AB于点D,若CD=OD,则△AOD与△BCD的面积比为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.
(1)如图1,当点G在CD上时,求证:△AEF≌△DFG;
(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;
(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MNMD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.
其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与轴交于点,与轴交于点,抛物线经过、两点并与轴的另一个交点为,且.
(1)求抛物线的解析式;
(2)点为直线上方对称轴右侧抛物线上一点,当的面积为时,求点的坐标;
(3)在(2)的条件下,连接,作轴于,连接、,点为线段上一点,点为线段上一点,满足,过点作交轴于点,连接,当时,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com