精英家教网 > 初中数学 > 题目详情
设正方形ABCD的边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…记正方形ABCD的边长为a1=1,按上述方法作出的正方形的边长依次为a2,a3,a4,…,an,请求出a2,a3,a4的值;根据以上规律写出an的表达式
an=(
2
n-1
an=(
2
n-1
分析:根据第一个正方形的边长为1可以求得第二个正方形的边长,以此类推可以求得正方形的边长满足一定的规律,根据次规律可以求得第n个正方形的边长.
解答:解:∵正方形ABCD的边长为1的正方形,
∴a1=1=(
2
)0,
∵AC是正方形ABCD的对角线,
∴AC=
2

∴a2=
12+12
=
2

同理可得
a3=
(
2
)
2
+(
2
)
2
=2=(
2
2
a4=
(2)2+(2)2
=2
2
=(
2
3

∴an=(
2
n-1
故答案为:2n-1
点评:本题考查了正方形的性质及勾股定理的知识,解题的关键是根据正方形的性质及勾股定理总结出正方形的边长满足的规律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连接EG并延长交DC于M,过M(1,-1)作MN⊥AB,垂足为N,MN交BD于P.
(1)找出图中一对全等三角形,并加以证明(正方形的对角线分正方形得到的两个三角形除外);
(2)设正方形ABCD的边长为1,按照题设方法作出的四边形BGMP,若是菱形,求精英家教网BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网设正方形ABCD的边CD的中点为E,F是CE的中点(图).求证:∠DAE=
12
∠BAF

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,设正方形ABCD的边长为2,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…,根据以上规律写出的表达式:an=
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读:如图(1),正方形ABCD的边AB在x轴上,C、D在抛物线y=-x(x-2)的图象上,我们称正方形ABCD内接于抛物线y=-x(x-2).抛物线y=-x(x-2)的对称轴交x轴于点M,设正方形ABCD的边长为a1,那么a1满足哪个二元一次方程呢?由对称性可知M是AB的中点,则AM=
1
2
a1
,AD=a1.易知OM=1,所以OA=1-
1
2
a1
,所以D点坐标为(1-
1
2
a1a1)
,代入抛物线解析式并化简可知a1满足二元一次方程(
1
2
)2a12+a1-1=0
;根据以上材料探索:(第(1)小题要求写出过程,其它两小题只要写出答案,不必要过程)
(1)如图(2),若并排两个正方形内接于抛物线y=-x(x-2),则每个正方形的边长a2满足的二元一次方程是
 

(2)如图(3),若并排三个正方形内接于抛物线y=-x(x-2),则每个正方形的边长a3满足的二元一次方程是
 

(3)如图(4),若并排n个正方形内接于抛物线y=-x(x-2),则每个正方形的边长an满足的二元一次方程是
 

精英家教网

查看答案和解析>>

同步练习册答案