精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3).

(1)求此函数的解析式及图象的对称轴;

(2)点PB点出发以每秒0.1个单位的速度沿线段BCC点运动,点QO点出发以相同的速度沿线段OAA点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.

①当t为何值时,四边形ABPQ为等腰梯形;

②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.

答案:
解析:

  解:(1)∵二次函数的图象经过点C(0,-3),

  ∴c=-3.

  将点A(3,0),B(2,-3)代入

  


练习册系列答案
相关习题

科目:初中数学 来源:101网校同步练习 初三数学 华东师大(新课标2001/3年初审) 华东师大版 题型:013

已知二次函数y=ax2+bx+c的图象如图所示,则函数y=ax+b的图象只可能是选项中的

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源:2009年贵州黔东南州中考数学试卷 题型:044

已知二次函数y=x2+ax+a-2.

(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.

(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式.

(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数yx2+ax+a-2.

(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.

(2)设a<0,当此函数图象与x轴的两个交点AB的距离为时,求出此二次函数的解析式.

(3)若(2)中的条件不变,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数yx2+ax+a-2.

(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.

(2)设a<0,当此函数图象与x轴的两个交点AB的距离为时,求出此二次函数的解析式.

(3)若(2)中的条件不变,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年北京四中初三第一学期期中考试数学试卷(解析版) 题型:填空题

已知二次函数y=ax 2+bx+c图象的一部分如图,则a的取值范围是____    __.

 

 

查看答案和解析>>

同步练习册答案