精英家教网 > 初中数学 > 题目详情

【题目】①若2a与1-a互为相反数,则a=_________.

②已知|a|=3|b-1|=4|a-b|=b-a,则a+b=_____________.

【答案】-1 82-6

【解析】

①根据互为相反数的两数和为0,列等式求解;②根据绝对值性质求出ab值,再根据 确定ab,根据此关系确定ab的值求解即可.

解:①∵2a1a互为相反数,

2a+(1-a)=0

a=-1.

②∵|a|=3

a=3a= -3

|b-1|=4

b-1=4b-1= -4

b=5b= -3.

|a-b|=b-a

a-b0

ab.

a=3b=5a= -3b=5a= -3b= -3

a+b=3+5=8a+b=(-3)+5=2a+b=(-3)+(-3)= -6

a+b的值为82-6

故答案为:①-1;②82-6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点分别在直线上,若,可以证明.请完成下面证明过程中的各项填空”.

证明:(理由:______.

______(对顶角相等)

(理由:______

______(两直线平行,同位角相等)

又∵

______(内错角相等,两直线平行)

(理由:______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在数轴上A点表示数aB点示数bC点表示数cb是最小的正整数,且ab满足 +(c-7)2=0.

(1) a= b= c=

(2) 若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合.

(3) ABC开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= AC= BC= .(用含t的代数式表示)

(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB的坐标分别为(-23)和(13),抛物线y=ax2+bx+ca0)的 顶点在线段AB上运动时,形状保持不变,且与x轴交于CD两点(CD的左侧),给出下列结论:①c3②当x<-3时,yx的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为-5④当四边形ACDB为平行四边形时,a.其中正确的是(

A. ②④ B. ②③ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两运动员在长为的直道为直道两端点)上进行匀速往返跑训练,两人同时分别从点,点起跑,甲从点起跑,到达点后,立即转身跑向点,到达点后,又立即转身跑向乙从点起跑,到达点后,立即转身跑向点,到达点后,又立即转身跑向若甲跑步的速度为,乙跑步的速度为,则起跑后内,两人相遇的次数为(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知下列方程:①;②0.3x1;③;④x24x3;⑤x6;⑥x+2y0.其中一元一次方程的个数是(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,是边上的动点,若在边上分别有点,使得.

1)设,求(用含的代数式表示)

2)尺规作图:分别在边上确定点平行或重合),使得(请在图中作图,保留作图痕迹,不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,等边ABC的边长为4cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边ADE

1)在点D运动的过程中,点E能否移动至直线AB上?若能,求出此时BD的长;若不能,请说明理由;

2)如图2,在点D从点B开始移动至点C的过程中,以等边ADE的边ADDE为边作ADEF

ADEF的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由;

若点MNP分别为AEADDE上动点,直接写出MN+MP的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

同步练习册答案