【题目】如图,在平面直角坐标系中,正方形两顶点为,,点D的坐标为,在上取点E,使得,连接,分别交,于M,N两点.
(1)求证:;
(2)求点E的坐标和线段所在直线的解析式;
(3)在M,N两点中任选一点求出它的坐标.
【答案】(1)详见解析;(2)点E的坐标是,;(3)点M的坐标为,或点N的坐标为.
【解析】
(1)由已知条件可得,有根据,,即可得证;
(2)由(1)中结论,可得,进而得出AE,得出点E坐标,设直线的解析式为,将点B坐标代入,即可得解;
(3)①设直线的解析式为,将点,点代入,即可得出直线解析式,联立直线CE和直线OB,即可得出点M的坐标;②设直线DE的解析式为,将点D ,点代入即可得出解析式,联立直线DE和直线OB,即可得出点N坐标..
(1)∵正方形中,坐标系中
∴
又∵,正方形中
∴
(2)∵,
∴
∴
又∵,
∴点E的坐标是
设直线的解析式为
将点的对应值,代入求得
∴所求解析式为
(3)①求点M的坐标:
设直线的解析式为
由点,点得
解得
∴直线的解析式为
解方程组得
∴直线与直线的交点M的坐标为
②仿①的方法求得点N的坐标为
设直线DE的解析式为
由点D ,点,得
解得
∴直线DE的解析式为
联立方程组,得
解得
直线DE与直线OB的交点为N的坐标.
科目:初中数学 来源: 题型:
【题目】某玩具厂计划一周生产某种玩具700件,平均每天生产100件,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 | +5 | -2 | -4 | +13 | -6 | +6 | -3 |
(1)根据记录的数据可知该厂星期四生产玩具 件;
(2)产量最多的一天比产量最少的一天多生产玩具 件;
(3)根据记录的数据可知该厂本周实际生产玩具 件;
(4)该厂实行每周计件工资制,每生产一件玩具可得20元,若超额完成任务,则超过部分每件另奖5元;少生产一件扣4元,那么该厂工人这一周的工资总额是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市城市居民用电收费方式有以下两种:
(甲)普通电价:全天0.53元/度;
(乙)峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.
估计小明家下月总用电量为200度,
⑴若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?
⑵请你帮小明计算,峰时电量为多少度时,两种方式所付的电费相等?
⑶到下月付费时, 小明发现那月总用电量为200度,用峰谷电价付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1的长方形ABCD中,E点在AD上,且BE=2AE.今分别以BE、CE为折线,将A、D向BC的方向折过去,图2为对折后A、B、C、D、E五点均在同一平面上的位置图.若图2中,∠AED=15°,则∠BCE的度数为何?( )
A. 30 B. 32.5 C. 35 D. 37.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)请判断BD、CE有何大小、位置关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y+1与x+2成正比例,且当x=4时,y=-4.
(1)求y关于x的函数关系式;
(2)若点(a,2)和(2,b)均在(1)中函数图像上,求a、b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知OC是∠AOB内部的一条射线,M,N分别为OA,OC上的点,线段OM,ON同时分别以30°/s,10°/s的速度绕点O逆时针旋转,设旋转时间为t秒.
(1)如图①,若∠AOB=120°,当OM、ON逆时针旋转到OM′、ON′处,
①若OM,ON旋转时间t为2时,则∠BON′+∠COM′= °;
②若OM′平分∠AOC,ON′平分∠BOC,求∠M′ON′的值;
(2)如图②,若∠AOB=4∠BOC,OM,ON分别在∠AOC,∠BOC内部旋转时,请猜想∠COM与∠BON的数量关系,并说明理由.
(3)若∠AOC=80°,OM,ON在旋转的过程中,当∠MON=20°,t= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com