精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,OA=OB=OC=6,过点A的直线AD交BC于点D,交y轴与点G,△ABD的面积为△ABC面积的
1
3

(1)求点D的坐标;
(2)过点C作CE⊥AD,交AB交于F,垂足为E.
①求证:OF=OG;
②求点F的坐标.
(3)在(2)的条件下,在第一象限内是否存在点P,使△CFP为等腰直角三角形?若存在,直接写出点P坐标;若不存在,请说明理由.
考点:全等三角形的判定与性质,坐标与图形性质,等腰直角三角形
专题:
分析:(1)作DH⊥AB于H,由OA=OB=OC=6,就可以得出∠ABC=45°,由三角形的面积公式就可以求出DH的值,就可以求出BH的值,从而求出D的坐标;
(2)①根据OA=OC,再根据直角三角形的性质就可以得出△AOG≌△COF,就可以得出OF=OG;
②由△AOG∽△AHD就可以得出OG的值,就可以求出F的坐标.
(3)根据条件作出图形图1,作PH⊥OC于H,PM⊥OB于M,由△PHC≌△PMF就可以得出结论,图2,作PH⊥OB于H,由△COF≌△PHF就可以得出结论,图3,作PH⊥OC于H,由△COF≌△PHC就可以得出结论.
解答:解:(1)作DH⊥AB于H,
∴∠AHD=∠BHD=90°.
∵OA=OB=OC=6,
∴AB=12,
∴S△ABC=
6×12
2
=36,
∵△ABD的面积为△ABC面积的
1
3

1
3
×36=
12DH
2

∴DH=2.
∵OC=OB,
∴∠BCO=∠OBC.
∵∠BOC=90°,
∴∠BCO=∠OBC=45°,
∴∠HDB=45°,
∴∠HDB=∠DBH,
∴DH=BH.
∴BH=2.
∴OH=4,
∴D(4,2);
(2)①∵CE⊥AD,
∴∠CEG=∠AEF=90°,
∵∠AOC=∠COF=90°,
∴∠COF=∠AEF=90°
∴∠AFC+∠FAG=90°,∠AFC+∠OCF=90°,
∴∠FAG=∠OCF.
在△AOG和△COF中
∠AOG=∠COF
OA=OC
∠FAG=∠OCF

∴△AOG≌△COF(ASA),
∴OF=OG;
②∵∠AOG=∠AHD=90°,
∴OG∥DH,
∴△AOG∽△AHD,
AO
AH
=
OG
DH

6
10
=
OG
2

∴OG=1.2.
∴OF=1.2.
∴F(1.2,0)
(3)如图1,当∠CPF=90°,PC=PF时,作PH⊥OC于H,PM⊥OB于M
∴∠PHC=∠PHO=∠PMO=∠PMB=90°.
∵∠BOC=90°,
∴四边形OMPH是矩形,
∴∠HPM=90°,
∴∠HPF+∠MPF=90°.
∵∠CPF=90°,
∴∠CPH+∠HPF=90°.
∵∠CPH=∠FPM.
在△PHC和△PMF中
∠CPH=∠FPM
∠CHP=∠FMP
CP=FP

∴△PHC≌△PMF(AAS),
∴CH=FM.HP=PM,
∴矩形HPMO是正方形,
∴HO=MO=HP=PM.
∵CO=OB,
∴CO-OH=OB-OM,
∴CH=MB,
∴FM=MB.
∵OF=1.2,
∴FB=4.8,
∴FM=2.4,
∴OM=3.6
∴PM=3.6,
∴P(3.6,3.6);
图2,当∠CFP=90°,PF=CF时,作PH⊥OB于H,
∴∠OFC+∠PFH=90°,∠PHF=90°,
∴∠PFH+∠FPH=90°,
∴∠OFC=∠HPF.
∵∠COF=90°,
∴∠COF=∠FHP.
在△COF和△PHF中
∠COF=∠FHP
∠OFC=∠HPF
CF=FP

∴△COF≌△PHF(AAS),
∴OF=HP,CO=FH,
∴HP=1.2,FH=6,
∴OH=7.2,
∴P(7.2,1.2);
图3,当∠FCP=90°,PC=CF时,作PH⊥OC于H,
∴∠CHP=90°,
∴∠HCP+∠HPC=90°.
∵∠FCP=90°,
∴∠HCP+∠OCF=90°,
∴∠OCF=∠HCP.
∵∠FOC=90°,
∴∠FOC=∠CHP.
在△COF和△PHC中
∠OCF=∠HCP
∠FOC=∠CHP
CF=PC

∴△COF≌△PHC(AAS),
∴OF=HC,OC=HP,
∴HC=1.2,HP=6,
∴HO=7.2,
∴P(6,7.2),
∴P(6,7.2),(7.2,1.2),(3.6,3.6).
点评:本题考查了坐标与图象的性质的运用,等腰直角三角形的性质的运用,三角形的面积公式的运用,全等三角形的判定与性质的运用,解答时求三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是(  )
A、x>9B、x≥9
C、x<9D、x≤9

查看答案和解析>>

科目:初中数学 来源: 题型:

某商店将某种服装先按成本提高60%标价,再以8折优惠卖出,结果每件服装仍可获利28元,则这种服装每件的成本价是(  )
A、240元B、100元
C、120元D、95元

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG、DE上,连接AE、BG.
(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;
(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

求出下列各式中x的值.
(1)(x-1)2-9=0
(2)x3-3=
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB∥CD,∠ABE=60°,∠CDE=20°,求∠BED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

解下列一元一次方程:
(1)0.5x-0.7=6.5-1.3x;
(2)
y
5
-
y-1
2
=1-
y+2
5

(3)1-2(2x+3)=-3(2x+1);
(4)
2x-1
2
-
2x+5
3
=
6x-7
6
-1

(5)2[2(3x+1)-4]=2x-5;
(6)
x-0.6
0.4
+x=
0.1x+1
0.3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的弦,OC⊥AB于C,且OC=
1
2
AB=2,则图中阴影部分的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

若a,b互为相反数,m的绝对值等于4,求2m÷(a+b-1).

查看答案和解析>>

同步练习册答案