精英家教网 > 初中数学 > 题目详情

【题目】某班抽查25名学生数学测验成绩(单位:分),频数分布直方图如图:

(1)成绩x在什么范围的人数最多?是多少人?
(2)若用半径为2的扇形图来描述,成绩在60≤x<70的人数对应的扇形面积是多少?
(3)从相成绩在50≤x<60和90≤x<100的学生中任选2人.小李成绩是96分,用树状图或列表法列出所有可能结果,求小李被选中的概率.

【答案】
(1)

解:成绩x在80≤x<90范围的人数最多,有9人;


(2)

解:成绩在60≤x<70的人数对应的扇形面积=×π22=π;


(3)

解:50≤x<60的两名同学用A、B表示,90≤x<100的两名同学用C、D表示(小李用C表示),

画树状图为:

共有12种等可能的结果数,其中有C的结果数为6,

所以小李被选中的概率=


【解析】此题考查了统计图的综合应用,涉及知识点主要有扇形面积的求法,树状图的画法以及概率的计算.
【考点精析】解答此题的关键在于理解频数分布直方图的相关知识,掌握特点:①易于显示各组的频数分布情况;②易于显示各组的频数差别.(注意区分条形统计图与频数分布直方图),以及对扇形统计图的理解,了解能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,

(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.
(2)如图2所示,在1所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.
(3)在2的条件下,若直线y=﹣2x﹣2分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,已知抛物线y=﹣x2+4x+5的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.

(1)直接写出D点和E点的坐标;
(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,S△HGF:S△BGF=5:6?
(3)图2所示的抛物线是由y=﹣x2+4x+5向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图两幅不完整的统计图,请结合统计

图解答下列问题:
(1)求本次抽样人数有多少人?
(2)补全条形统计图;
(3)该校九年级共有600名学生,估计九年级最喜欢跳绳项目的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形既是中心对称又是轴对称图形的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景点的门票价格如表:

购票人数/人

1~50

51~100

100以上

每人门票价/元

12

10

8

某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.
(1)两个班各有多少名学生?
(2)团体购票与单独购票相比较,两个班各节约了多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.

(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半径;
②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)

查看答案和解析>>

同步练习册答案