精英家教网 > 初中数学 > 题目详情
(2013•上海模拟)如图,在半径为1的扇形AOB中,∠AOB=90°,点P是
AB
上的一个动点(不与点A、B重合),PC⊥OA,PD⊥OB,垂足分别为点C、D,点E、F、G、H分别是线段OD、PD、PC、OC的中点,EF与DG相交于点M,HG与EC相交于点N,联结MN.如果设OC=x,MN=y,那么y关于x的函数解析式及函数定义域为
y=-
1
3
x2+
4
9
(o<x<1)
y=-
1
3
x2+
4
9
(o<x<1)
分析:建立平面直角坐标系,连接OP交MN于R,交MG于Z,交CE于Q,根据三角形中位线求出EF∥OP∥GH,求出DM=MZ=ZG,EQ=QN=CN,求出E的坐标,即可求出M、N的坐标,根据勾股定理求出MN,即可得出答案.
解答:解:
如图,建立平面直角坐标系,连接OP交MN于R,交MG于Z,交CE于Q,
∵点E、F、G、H分别是线段OD、PD、PC、OC的中点,
∴EF∥OP,GH∥OP,
∴DM=MZ,GZ=MZ,
∴DM=MZ=ZG,
同理EQ=QN=CN,
在Rt△OPC中,OC=x,OP=1,由勾股定理得:OD=CP=
1-x2

∴E的坐标是(0,
1
2
1-x2
),
∵CN=NQ=EQ,OC=x,
∴N的横坐标是
2
3
OC=
2
3
x,N的纵坐标是
1
3
OE=
1
6
1-x2
,M的横坐标是x-
2
3
x=
1
3
x,纵坐标是OE-
1
6
1-x2
=
5
6
1-x2

即N(
2
3
x,
1
6
1-x2
),M(
1
3
x,
5
6
1-x2
),
由勾股定理得:MN=(
2
3
x-
1
3
x)2+[
1
6
1-x2
-
5
6
1-x2
2
即y=-
1
3
x2+
4
9
,x的范围是:O<x<1.
故答案为:y=-
1
3
x2+
4
9
(0<x<1).
点评:本题考查了平行线分线段成比例定理,三角形的中位线,勾股定理等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•上海模拟)求值:
3-8
=
-2
-2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海模拟)已知:如图,在△ABC中,AD⊥BC,D点为垂足,AC⊥BE,E点为垂足,M点为AB边的中点,联结ME、MD、ED.
(1)求证:△MED与△BMD都是等腰三角形;
(2)求证:∠EMD=2∠DAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海模拟)一个函数的图象关于y轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数y=x2+bx-4是“偶函数”,该函数的图象与x轴交于点A和点B,顶点为P,那么△ABP的面积是
8
8

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海模拟)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,AD=AC=9,DE⊥CD交BC于点E,tan∠DCB=
12
,则BE=
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海模拟)将矩形ABCD折叠,使得对角线的两个端点A、C重合,折痕所在直线交直线AB于点E,如果AB=4,BE=1,那么∠CAB的余切值是
2
6
3
2
6
3

查看答案和解析>>

同步练习册答案