精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2-4ax+c交x轴于A、B两点,交y轴于C点,点D(4,-3)在抛物精英家教网线上,且四边形ABDC的面积为18.
(1)求抛物线的函数关系式;
(2)若正比例函数y=kx的图象将四边形ABDC的面积分为1:2的两部分,求k的值;
(3)将△AOC沿x轴翻折得到△AOC′,问:是否存在这样的点P,以P为位似中心,将△AOC′放大为原来的两倍后得到△EPG(即△EPG∽△AOC′,且相似比为2),使得点E、G恰好在抛物线上?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
分析:(1)由抛物线解析式可知抛物线对称轴为x=2,根据对称性可求C点坐标,则四边形ABDC为等腰梯形,CD=4,OC=3,由已知四边形面积可求AB=8,根据等腰梯形的性质可求A点坐标,将A、C两点坐标代入抛物线解析式即可;
(2)由(1)可知S四边形ABDC=18,S△OBD=9,则S△OBD=
1
2
S四边形ABDC,分①直线y=kx与边BD相交,②直线y=kx与边CD相交,两种情况求k的值;
(3)存在.翻折后点C′(0,3),由图形的位似及相似比为2,按照①同向放大,②反向放大,两种情况,根据C′为PG的中点,由相似比求P、E、G的坐标.
解答:解:(1)∵y=ax2-4ax+c=a(x-2)2-4a+c,
∴抛物线的对称轴为直线x=2.(1分)
∵点D(4,-3)在抛物线上,∴由对称性知C(0,-3).(2分)
∴四边形ABCD为梯形.
由四边形ABDC的面积为18、CD=4,OC=3得AB=8,∴A(-2,0).(3分)
由A(-2,0)、C(0,-3)得y=
1
4
x2-x-3.(4分)

(2)∵S四边形ABDC=18,S△OBD=9,
∴S△OBD=
1
2
S四边形ABDC
∴只可能出现两种情形:
①直线y=kx与边BD相交于点E,且S△OBE=
1
3
S四边形ABDC=
1
3
×18=6;
∵OB=6,
∴点E到OB的距离为2,
直线BD的解析式为y=
3
2
x-9,
令y=-2,则x=
14
3

∴E点坐标为(
14
3
,-2)
把E(
14
3
,-2)代入y=kx得k=-
3
7

②直线y=kx与边CD相交于点F,且S四边形OBDF=
2
3
S四边形ABDC=
2
3
×18=12(5分);精英家教网
∵OB=6,
∴DF=2,
∴F点坐标为(2,-3),
把F(2,-3)代入y=kx得k=-
3
2

(3)翻折后点C′(0,3),由图形的位似及相似比为2,可得:
∵根据位似得平行k相等设解析式,
直线AC′的解析式为:y=kx+b,
-2k+b=0
b=3

解得:
k=1.5
b=3

∴y=1.5x+3,
∴直线EG的解析式为:y=1.5x+c,
∴两函数交点坐标为:
y=
1
4
x2-x-3
y=1.5x+c

∴整理可得出:x2-10x-12-4c=0,
∴x1+x2=10,
∵图形的位似及相似比为2,
∴EN=2AO=4,GN=2C′O=6,
∴x2-x1=4,
解得:x2=7,x1=3,
∴E点横坐标为:3,进而得出纵坐标为:-
15
4

或E点横坐标为:7,进而得出纵坐标为:
9
4

即可得出:
①若为同向放大,则E(3,-
15
4
)、G(7,
9
4
);(8分)
②若为反向放大,则E(7,
9
4
)、G(3,-
15
4
).(9分)
若为情形①,则P(-7,
15
4
);(10分)
若为情形②,
则P(1,
3
4
).(11分)
点评:本题考查了二次函数的综合运用.关键是根据抛物线的对称性,判断四边形ABDC为等腰梯形,求顶点坐标,确定抛物线解析式,再根据面积关系确定P点坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案