精英家教网 > 初中数学 > 题目详情

已知,如图,MN⊥AB,垂足为G,MN⊥CD,垂足为H,直线EF分别交AB、CD于G、Q,∠GQC=120°,求∠EGB和∠HGQ的度数。

 

【答案】

∠EGB=60°,∠HGQ=30°

【解析】

试题分析:由MN⊥AB,MN⊥CD可得AB∥CD,根据平行线的性质可得∠EGB=∠EQH,再结合∠GQC=120°即可求得∠EGB和∠HGQ的度数。

∵MN⊥AB,MN⊥CD

∴∠MGB=∠MHD=90°

∴AB∥CD

∴∠EGB=∠EQH

∵∠EQH=180°-∠GQC=180°-120°=60°

∴∠EGB=60°

∴∠EGM=90°-∠EGB=30°

∴∠EGB=60°,∠HGQ=30°.

考点:本题考查的是平行线的判定和性质

点评:解答本题的关键是熟练掌握垂直于同一条直线的两条直线互相平行;两直线平行,同位角相等.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,MN⊥PQ,垂足为O,点A、B分别在射线上OM、OP上,直线BE平分∠精英家教网PBA与∠BAO的平分线相交于点C.
(1)若∠BAO=45°,求∠ACB;
(2)若点A、B分别在射线上OM、OP上移动,试问∠ACB的大小是否会发生变化?如果保持不变,请说明理由;如果随点A、B的移动发生变化,请求出变化的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,MN为⊙O的直径,l⊥MN于H,割线MCA及弦MBD分别交⊙O于C、D.
求证:MA•MC=MB•MD.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知,如图,MN是?ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.求证:AA′+CC′=BB′+DD′.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•海淀区)已知:如图,MN是⊙O的切线,切点为A,MN平行于弦CD,弦AB交CD于点E.
求证:AC2=AE•AB.

查看答案和解析>>

同步练习册答案