精英家教网 > 初中数学 > 题目详情
精英家教网将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).如果DM:MC=3:2,则DE:DM:EM=(  )
A、7:24:25B、3:4:5C、5:12:13D、8:15:17
分析:先根据折叠的性质得EM=EA,再根据勾股定理得ME的长,从而求比值.
解答:解:由折叠知,EM=EA,
设CD=AD=5a,
∴DE=5a-EM,DM=3a,MC=2a,
在Rt△EDM中,EM2=DE2+DM2
即ME2=(5a-ME)2+(3a)2
解得ME=
17
5
a
∴ED=
8
5
a
∴DE:DM:EM=
8
5
a:3a:
17
5
a=8:15:17.
故选D.
点评:本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、通过设适当的参数,利用正方形的性质,勾股定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).
(1)如果正方形边长为2,M为CD边中点.求EM的长.
(2)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;
(3)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否与点M的位置有关?若有关,请把△CMG的周长用含DM的长x的代数式表示;若无关,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,将正方形ABCD折叠,使点C与点D重合于正方形内点P处,折痕分别为AF、BE,如果正方形ABCD的边长是2,那么△EPF的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形ABCD的边长为4,BE∥AC交DC的延长线于E.
(1)如图1,连接AE,求△AED的面积.
(2)如图2,设P为BE上(异于B、E两点)的一动点,连接AP、CP,请判断四边形APCD的面积与正方形ABCD的面积有怎样的大小关系?并说明理由.
(3)如图3,在点P的运动过程中,过P作PF⊥BC交AC于F,将正方形ABCD折叠,使点D与点F重合,其折线MN与PF的延长线交于点Q,以正方形的BC、BA为x轴、y轴建立平面直角坐标系,设点Q的坐标为(x,y),求y与x之间的函数关系式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).
(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;
(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.

查看答案和解析>>

同步练习册答案