分析 (1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS即可证明;
②因为VP≠VQ,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;
(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.
解答 解:(1)①∵t=1(秒),
∴BP=CQ=3(厘米)
∵AB=12,D为AB中点,
∴BD=6(厘米)
又∵PC=BC-BP=9-3=6(厘米)
∴PC=BD
∵AB=AC,
∴∠B=∠C,
在△BPD与△CQP中,
$\left\{\begin{array}{l}{BP=CQ}\\{∠B=∠C}\\{BD=PC}\end{array}\right.$,
∴△BPD≌△CQP(SAS),
②∵VP≠VQ,
∴BP≠CQ,
又∵∠B=∠C,
要使△BPD≌△CPQ,只能BP=CP=4.5,
∵△BPD≌△CPQ,
∴CQ=BD=6.
∴点P的运动时间t=$\frac{BP}{3}$=$\frac{4.5}{3}$=1.5(秒),
此时VQ=$\frac{CQ}{t}$=$\frac{6}{1.5}$=4(厘米/秒).
(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,
设经过x秒后P与Q第一次相遇,依题意得4x=3x+2×12,
解得x=24(秒)
此时P运动了24×3=72(厘米)
又∵△ABC的周长为33厘米,72=33×2+6,
∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.
点评 本题考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用,解题的根据是熟练掌握三角形全等的判定和性质.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 抛出的石块会下落 | |
B. | 当室外温度低于-3℃时,将一碗清水放到室外,水会结冰 | |
C. | 任意买一张电影票,座位号是奇数 | |
D. | 地球绕着太阳转 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com