精英家教网 > 初中数学 > 题目详情
6.某商场销售一批名牌衬衫,平均每天销售20件,每件盈利40元,为了扩大销售,增加盈利和减少库存,商场决定采取适当降价措施,经调查发现,如果每件降价1元,则每天可多销售2件.
(1)商场若想每天盈利1200元,每件衬衫应降价多少元?
(2)问在这次活动中,平均每天能否获利1500元?若能,求出每件衬衫应降多少元;若不能,请说明理由.

分析 (1)设每件衬衫应降价x元,则每件盈利(40-x)元,每天可以售出(20+2x),所以此时商场平均每天要盈利(40-x)(20+2x)元,根据商场平均每天要盈利=1200元,为等量关系列出方程求解即可.
(2)假设能达到,根据商场平均每天要盈利=1500元,为等量关系列出方程,看该方程是否有解,有解则说明能达到,否则不能.

解答 解:(1)设每件衬衫应降价x元,则每件盈利(40-x)元,每天可以售出(20+2x),
由题意,得(40-x)(20+2x)=1200,
即:(x-10)(x-20)=0,
解得x1=10,x2=20,
为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元;

(2)假设能达到,由题意,得(40-x)(20+2x)=1500,
整理,得x2-30x+350=0,
△=302-2×1×350=-500<0,
即:该方程无解,
所以,商场平均每天盈利不能达到1500元.

点评 本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系列出方程求解,另外还用到的知识点是“根的判别式”的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,扇形OAB的圆心角∠AOB=120°,半径OA=6cm.
(1)请你用尺规作图的方法作出扇形的对称轴(不写作法,保留作图痕迹);
(2)求弧AB的长及扇形OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在△ABC中,BD为∠ABC的平分线.

(1)如图1,∠C=2∠DBC,∠A=60°,求证:△ABC为等边三角形;
(2)如图2,若∠A=2∠C,BC=8,AB=4.8,求AD的长度;
(3)如图3,若∠ABC=2∠ACB,∠ACB的平分线OC与BD相交于点O,且OC=AB,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,过点C作直线MN∥AB,点P为直线MN上的一动点(不与C点重合),∠PAB的平分线交BC于E. 设CP=x,AP=y.
(1)若PA与线段BC交于点D,且CP=1,求CD的长;
(2)若△ABE为等腰三角形,求y关于x的函数关系式;
(3)若PA与线段BC交于点D,△AEP是直角三角形,求CP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.将0.0000025用科学记数法表示为2.5×10-6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,O是直线AB上一点,∠AOC=∠BOD,射线OE平分∠BOC,∠EOD=42°,求∠EOC的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.小慧和小聪沿图1中的景区公路游览,小慧乘坐车速为30km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑自行车从飞瀑出发前往宾馆,速度为20km/h,中间不停留,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点,上午10:00小聪到达宾馆,图2中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系,试结合图中信息回答:

(1)小聪上午几点钟从飞瀑出发?
(2)试求线段AB,GH的交叉点B的坐标,并说明它的实际意义.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.由方程组$\left\{\begin{array}{l}{x+y=2}\\{y+z=3}\\{x+z=1}\end{array}\right.$,可以得到x+y+z的值是3.

查看答案和解析>>

同步练习册答案