分析 (1)由于△ACD为等边三角形,则AC=AD,∠DAC=60°,则作∠BAE=60°,再截取AE=AB,于是△ACE可由△ADB绕点A顺时针旋转60°得到;
(2)连结BE,如图,根据旋转的性质得BD=CE=6,AE=AB,∠BAE=60°,可判断△ABE为等边三角形,所以∠ABE=60°,BE=AB,加上∠ABC=30°,所以∠EBC=90°,然后利用勾股定理计算出BE.从而得到AB的长.
解答 解:(1)如图,△ACE为所作;
(2)连结BE,如图,
∵△ABD绕点A顺时针旋转60°得到△AEC,
∴BD=CE=6,AE=AB,∠BAE=60°,
∴△ABE为等边三角形,
∴∠ABE=60°,BE=AB,
而∠ABC=30°,
∴∠EBC=90°,
在Rt△ABE中,BE=$\sqrt{C{E}^{2}-B{C}^{2}}$=$\sqrt{{6}^{2}-{4}^{2}}$=2$\sqrt{5}$,
∴AB=2$\sqrt{5}$.
点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了等边三角形的判定与性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a2•a3=a6 | B. | (a-b)2=a2-b2 | C. | -(3ab3)2=-6a2b6 | D. | -2x-2=-$\frac{2}{x^2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com