精英家教网 > 初中数学 > 题目详情

【题目】如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点EBE是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为(  )

A.B.C.D.

【答案】D

【解析】

首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可

解:连接BD,BE,BO,EO,

∵B,E是半圆弧的三等分点,

∴∠EOA=∠EOB=∠BOD=60°,

∴∠BAC=∠EBA=30°,

∴BE∥AD,

∵弧BE的长为π,

π,

解得:R=2,

∴AB=ADcos30°=2

∴BC=AB=

∴AC==3,

∴S△ABC=×BC×AC=××3=

∵△BOE和△ABE同底等高,

∴△BOE和△ABE面积相等,

∴图中阴影部分的面积为:SABC﹣S扇形BOE

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,RtABE中,∠B=90°AB=BE,将ABE绕点A逆时针旋转45°,得到AHD,过DDCBEBE的延长线于点C,连接BH并延长交DC于点F,连接DEBF于点O.下列结论:①DE平分∠HDC;②DO=OE;③HBF的中点;④BC-CF=2CE;⑤CD=HF,其中正确的有(

A.5B.4C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+ca≠0)与y轴交于点C,与x轴交于AB两点,其中点B的坐标为B40),抛物线的对称轴交x轴于点DCEAB,并与抛物线的对称轴交于点E.现有下列结论:①a0;②b0;③4a+2b+c0;④AD+CE4.其中所有正确结论的序号是(  )

A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线交x轴于AB两点(AB右边),A30),B10)交y轴于C点,C03),连接AC

1)求抛物线的解析式;

2P为抛物线上的一点,作PECAE点,且CE=3PE,求P点坐标;

3)将原抛物线向上平移1个单位抛物线的对称轴交x轴于H点,过H作直线MHNH,当MHNH时,求MN恒过的定点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,CO上一点,连接AC.过点BO的切线,交AC的延长线于点D,在AD上取一点E,使AEAB,连接BE,交O于点F

请补全图形并解决下面的问题:

1)求证:∠BAE2EBD

2)如果AB5sinEBD.求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF代表建筑物,兵兵位于建筑物前点B处,风筝挂在建筑物上方的树枝点G处(点G在FE的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G与建筑物顶点D及风筝线在手中的点A在同一条直线上,点A距地面的高度AB=1.4米,风筝线与水平线夹角为37°.

(1)求风筝距地面的高度GF;

(2)在建筑物后面有长5米的梯子MN,梯脚M在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根米长的竹竿能否触到挂在树上的风筝?

(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是圆O的直径,弦CDAB,垂足为H,在CD上有点N满足CN=CAAN交圆O于点F,过点FAC的平行线交CD的延长线于点M,交AB的延长线于点E

1)求证:EM是圆O的切线;

2)若ACCD=58AN=3,求圆O的直径长度.

3)在(2)的条件下,直接写出FN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y= (x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.

(1)若OA=4,求k的值;

(2)连接OC,若BD=BC,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的直径,的切线,连接,过,连接,延长交于点

1)求证:的切线;

2)若

①求的长;

②连接,求的值.

查看答案和解析>>

同步练习册答案