【题目】如图①②,在平面直角坐标系中,边长为2的等边恰好与坐标系中的重合,现将绕边的中点点也是的中点),按顺时针方向旋转到△的位置.
(1)求点的坐标;
(2)求经过三点、、的抛物线的解析式;
(3)如图③,是以为直径的圆,过点作的切线与轴相交于点,求切线的解析式;
(4)抛物线上是否存在一点,使得.若存在,请求出点的坐标;若不存在,请说明理由.
【答案】(1);(2);(3);(4).
【解析】
(1)利用中心对称图形的性质和等边三角形的性质,可以求出.
(2)运用待定系数法,代入二次函数解析式,即可求出.
(3)借助切线的性质定理,直角三角形的性质,求出F,B的坐标即可求出解析式.
(4)当M在x轴上方或下方,分两种情况讨论.
解:(1)将等边绕边的中点按顺时针方向旋转到△,
则有,四边形是菱形,所以的横坐标为3,
根据等边的边长是2,
利用等边三角形的性质可得;
(2)抛物线过原点,设抛物线解析式为,
把,代入,得,
解得,,
抛物线解析式为;
(3),,
,
又,
,
,
,
设直线的解析式为,
把,代入,得,
解得,,
直线的解析式为;
(4)①当在轴上方时,存在,
,
得,解得,,
当时,,
当时,,
,;
②当在轴下方时,不存在,设点,
,
得,无解,
综上所述,存在点的坐标为,.
科目:初中数学 来源: 题型:
【题目】如图所示,E是矩形ABCD的边BC上一点,EF⊥AE,分别交AC,CD于点M,F,BG⊥AC,垂足为G,BG交AE于点H.
(1)求证:△ABE∽△ECF;
(2)找出与△ABH相似的三角形,并证明;
(3)若E是BC中点,BC=2AB,AB=4,求EM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E是线段AC上一动点,连接DE.
填空:①则的值为______;②∠EAD的度数为_______.
(2)类比探究
如图2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E是线段AC上一动点,连接DE.请求出的值及∠EAD的度数;
(3)拓展延伸
如图3,在(2)的条件下,取线段DE的中点M,连接AM、BM,若BC=4,则当△ABM是直角三角形时,求线段AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,直线分别与,轴交于点,,与反比例函数的图象分别交于点,, 轴于点, ,,.
(1)求的长;
(2)求反比例函数的解析式;
(3)连接,求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,△ABC中,∠C=90°,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).
(2)已知内角度数的两个三角形如图2,图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】居民区内的“广场舞”引起媒体关注,民勤电视台为此进行过专访报到.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:.非常赞同;.赞同但要有时间限制;.无所谓;.不赞同.并将调查结果绘制了图①和图②两幅不完整的统计图.请你根据图中提供的信息解答下列问题:
(1)求本次被抽查的居民有多少人?
(2)将图①和图②补充完整.
(3)求图②中“”层次所在扇形的圆心角度数.
(4)估计该小区5000名居民中对“广场舞”的看法表示赞同(包括层次和层次)的大约有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:
发言次数n | |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
(1)求得样本容量为 ,并补全直方图;
(2)已知A组发表提议的代表中恰有1位女士,E组发表提议的代表中只有2位男士,现从A组与E组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元.
(1)求每只A型口罩和B型口罩的销售利润;
(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不超过A型口罩的3倍,设购进A型口罩x只,这2000只口罩的销售总利润为y元.
①求y关于x的函数关系式;
②该药店购进A型、B型口罩各多少只,才能使销售总利润最大?
(3)在销售时,该药店开始时将B型口罩提价100%,当收回成本后,为了让利给消费者,决定把B型口罩的售价调整为进价的15%,求B型口罩降价的幅度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在由边长为1的小正方形组成的网格中.点 A,B,C,D 都在这些小正方形的格点上,AB、CD 相交于点E,则sin∠AEC的值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com