精英家教网 > 初中数学 > 题目详情
14.如图,在四边形ABCD中,已知AD∥BC,AB⊥BC,点E,F在边AB上,且∠AED=45°,∠BFC=60°,AE=2,EF=2-$\sqrt{3}$,FC=2$\sqrt{3}$.
(1)BC=3.
(2)求点D到BC的距离.
(3)求DC的长.

分析 (1)由AB⊥BC,FC=2$\sqrt{3}$°,∠BFC=60°,直接利用三角函数的知识求解即可求得答案;
(2)首先过点D作DG⊥BC于点G,由AD∥BC,AB⊥BC,可得DG=AB,继而求得答案;
(3)首先可得四边形ABGD是平行四边形,即可求得CG的长,然后由勾股定理求得答案.

解答 解:(1)∵AB⊥BC,
∴∠B=90°,
∵FC=2$\sqrt{3}$,∠BFC=60°,
∴BC=FC•sin60°=2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=3;
故答案为:3;

(2)过点D作DG⊥BC于点G,
∵AD∥BC,AB⊥BC,
∴DG=AB,DA⊥AB,
∵FC=2$\sqrt{3}$,∠BFC=60°,
∴BF=FC•cos60°=$\sqrt{3}$,
∴DC=AB=AE+EF+BF=2+2-$\sqrt{3}$+$\sqrt{3}$=4;

(3)∵DA⊥AB,∠AED=45°,
∴AD=AE=2,
∵DG⊥BC,AB⊥BC,
∴DG∥AB,
∵AD∥BC,
∴四边形ABGD是平行四边形,
∴BG=AD=2,
∴CG=BC-BG=3-2=1,
∴在Rt△DCG中,CD=$\sqrt{D{G}^{2}+C{G}^{2}}$=$\sqrt{17}$.

点评 此题考查了矩形的判定与性质、勾股定理以及三角函数等知识.注意证得四边形ABGD是平行四边形是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.探索与应用.
(1)先填写下表,通过观察后在回答问题:
①表格中x=0.1;y=10;
②从表格中探究a与$\sqrt{a}$的数位的规律,并利用这个规律解决下面两个问题:
已知$\sqrt{3.24}$=1.8,若$\sqrt{a}$=180,则a=32400.
已知$\sqrt{25.36}$=5.036,$\sqrt{253.6}$=15.906,则$\sqrt{253600}$=503.6.
a0.00010.01110010000
$\sqrt{a}$0.01x1y100
(2)阅读例题,然后回答问题;
例题:设a、b是有理数,且满足a+$\sqrt{2}$b=3-2$\sqrt{2}$,求a+b的值.
解:由题意得(a-3)+(b+2)$\sqrt{2}$=0,因为a、b都是有理数,所以a-3,b+2也是有理数,由于$\sqrt{2}$是无理数,所以a-3=0,b+2=0,所以a=3,b=-2,所以a+b=3+(-2)=-1.
问题:设x、y都是有理数,且满足x2-2y+$\sqrt{5}$y=10+3$\sqrt{5}$,求xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某工厂有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件,已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需用甲种原料4kg,乙种原料10kg,可获利润1200元.
(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;
(2)设生产A、B两种产品总利润是W(元),采用哪种生产方案获总利润最大?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD∥AB交⊙A于点D(点D在点C右侧),连结BC、AD.
(1)若CD=6,求四边形ABCD的面积;
(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.为了迎接暑假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,其中甲、乙两种服装的进价和售价如表:
服装价格
进价(元/件)mm-30
售价(元/件)320280
经调查:用900元购进甲服装的数量与用750元购进乙服装的数量相同.
(1)求m的值;
(2)若专卖店购进的甲、乙两种服装共200件,考虑市场需求和销售利润,要求购进甲服装的数量不超过80件,且总利润(利润=售价-进价)不少于26700元,问该专卖店有几种进货方案?
(3)专卖店准备在8月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变,那么在(2)中所求的几种进货方案中,该专卖店要获得最大利润,应如何进货?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在Rt△ABC中,∠C=90°,BC=3,CA=4,矩形DEFC的顶点D、E、F都在△ABC的边上.
(1)设DE=x,则AD=$\frac{4}{3}$x(用含x的代数式表示);
(2)求矩形DEFC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,A,B,C是一条公路上的三个村庄,A,B间的路程为100km,A,C间的路程为40km,现在A,B之间设一个车站P,设P,C之间的路程为xkm.
(1)用含x的代数式表示车站到三个村庄的路程之和;
(2)当x=10km时,车站到三个村庄的路程之和是多少千米?
(3)若要使车站到三个村庄的路程总和最短,问车站应设在何处?最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在△ABC中,AB=5cm,BC=8cm,则AC边的取值范围是3<AC<13.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.在半径为R的圆形工件中截去一个圆孔,剩余面积是圆孔面积的3倍,则圆孔的半径是$\frac{R}{2}$.

查看答案和解析>>

同步练习册答案