精英家教网 > 初中数学 > 题目详情

【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2 ,求BC的长.

【答案】
(1)证明:连接OB,如图所示:

∵AC是⊙O的直径,

∴∠ABC=90°,

∴∠C+∠BAC=90°,

∵OA=OB,

∴∠BAC=∠OBA,

∵∠PBA=∠C,

∴∠PBA+∠OBA=90°,

即PB⊥OB,

∴PB是⊙O的切线


(2)解:∵⊙O的半径为2

∴OB=2 ,AC=4

∵OP∥BC,

∴∠C=∠BOP,

又∵∠ABC=∠PBO=90°,

∴△ABC∽△PBO,

∴BC=2


【解析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是2/支,但甲、乙两商店的优惠条件却不同.

甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款. 乙商店:按标价的80%付款.

在水性笔的质量等因素相同的条件下.

(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.

(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点D是Rt△ABC的斜边BC上的一点,tanB= ,BC=3BD,CE⊥AD,则 =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.

(1)求证:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC=12cm,且BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s的速度运动.

(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;

(2)若点P、Q两点分别从B、A两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD、△BCE、△ABC的面积分别是S1、S2、S3 , 现有如下结论:
①S1:S2=AC2:BC2
②连接AE,BD,则△BCD≌△ECA;
③若AC⊥BC,则S1S2= S32
其中结论正确的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD、△BCE、△ABC的面积分别是S1、S2、S3 , 现有如下结论:
①S1:S2=AC2:BC2
②连接AE,BD,则△BCD≌△ECA;
③若AC⊥BC,则S1S2= S32
其中结论正确的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A=x-2y,B=-x-4y+1.

(1)求2(A+B)-(A-B);(结果用含x,y的代数式表示

(2)当互为相反数时,求(1)中代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过反比例函数y=(x>0)的图象上一点A作x轴的平行线,交双曲线y=-(x<0)于点B,过B作BC∥OA交双曲线y=- (x<0)于点D,交x轴于点C,连接AD交y轴于点E,若OC=3,求OE的长.

查看答案和解析>>

同步练习册答案