精英家教网 > 初中数学 > 题目详情
抛物线y=-x2+2x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点D,顶点为C
(1)求A、B、C、D各点坐标;
(2)求四边形ABCD的面积;
(3)抛物线上是否存在点P,使△PAB的面积是△ABC的面积的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
(1)∵y=-x2+2x+3=-(x+1)(x-3)=-(x-1)2+4,
∴A(-1,0)、B(3,0)、C(1,4)、D(0,3).

(2)过C作CE⊥x轴,垂足为E;
由(1)知:OA=1、OD=3、CE=4、OE=1、BE=2;
S四边形ABCD=S△AOD+S△BCE+S梯形ODCE
=
1
2
×1×3+
1
2
×2×4+
1
2
×(3+4)×1=9.

(3)由于CE=4,即点C到x轴的距离为4;
若S△PAB=2S△ABC,则点P到x轴的距离为8,
设P(x,-8),依题意,有:
-x2+2x+3=-8,
化简得:x2-2x-11=0
解得:x=1±2
3

即:P(1±2
3
,-8).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c的图象如图所示,则这个二次函数的表达式是y=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图),如果抛物线的最高点M离墙1米,离地面
40
3
米,求水流下落点B离墙距离OB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在直角坐标系xOy中,A,B是x轴上两点,以AB为直径的圆交y轴于点C,设过A、B、C三点的抛物线关系为y=x2-mx+n,若方程x2-mx+n=0两根倒数和为-2.
(1)求n的值;
(2)求此抛物线的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知:抛物线y=
1
2
x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=
1
2
x-2,连接AC.
(1)B、C两点坐标分别为B(______,______)、C(______,______),抛物线的函数关系式为______;
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

科学研究表明,合理安排各学科的课外学习时间,可以有效的提高学习的效率.教育专家们通过对九年级学生的课外学习时间与学习收益情况进行进一步的研究发现,九年级学生每天课外用于非数学学科的学习时间t(小时)与学习收益量y1的函数关系是图①中的一条折线;每天用于数学学科的学习时间t(小时)与学习收益量y2的函数关系如图②所示:图象中OA是顶点为A的抛物线的一部分,AB是射线.

(1)求出y1与时间t(小时)之间的函数关系式,并注明自变量t的取值范围;
(2)求出y2与时间t(小时)之间的函数关系式,并注明自变量t的取值范围;
(3)如果九年级学生每天课外学习的时间为2小时,学习的总收益量为W(W=y1+y2),请问应如何安排学习时间才能使学习的总收益量最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长是4,E是AB边上一点(E不与A、B重合),F是AD的延长线上一点,DF=2BE.四边形AEGF是句型,其面积y随BE的长x的变化而变化且构成函数.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若上述(1)中是二次函数,请用配方法把它转化成y=a(x-h)2+k的形式,并指出当x取何值时,y取得最大(或最小)值,该值是多少?
(3)直接写出抛物线与x轴交点坐标.

查看答案和解析>>

同步练习册答案