【题目】如图,在中,点是边上的动点(点与点不重合),过动点作交于点
(1)若与相似,则是多少度?
(2)试问:当等于多少时,的面积最大?最大面积是多少?
(3)若以线段为直径的圆和以线段为直径的圆相外切,求线段的长.
【答案】(1)60°或30°.(2)PC等于12时,的面积最大,最大面积是.(3)
【解析】
(1)当△ABC与△DAP相似时,应有∠APD=∠B或∠APD=∠C,即∠APD为30°或60°.
(2)设PC=x,由PD∥BA,得∠BAC=∠PDC=90°,∴AC=BCcos60°=12,CD=xcos60°= x,AD=12-x,而PD=xsin60°=x,∴S△APD=PDAD把PD,AD的值代入,得到S△APD=.∴PC等于12时,△APD的面积最大,最大面积是18.
(3)设以BP和AC为直径的圆心分别为O1、O2,过O2作O2E⊥BC于点E,设⊙O1的半径为x,则BP=2x,AC=12,∴O2C=6,∴CE=6cos60°=3.∴由勾股定理得,O2E=,O1E=21-x,由于⊙O1和⊙O2外切,则圆心距O1O2=x+6.在Rt△O1O2E中,有O1O22=O2E2+O1E2,即(x+6)2=(21-x)2+(3)2,求解得到x的值,进而求得BP的值.
(1)当△ABC与△DAP相似时,∠APD的度数是60°或30°.
(2)设,∵,,∴,
又∵,∴,,
∴,而,
∴.
∴PC等于12时,的面积最大,最大面积是.
(3)设以和为直径的圆心分别为、,过作于点,
设的半径为,则.显然,,∴,∴,
∴,,
又∵和外切,∴.
在中,有,
∴,解得:, ∴
科目:初中数学 来源: 题型:
【题目】已知关于 x 的一元二次方程 x 2k 1 x k k 1 0 有实数根.
(1)求k 的取值范围;
(2)若此方程的两实数根,满足 11 ,求k 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABDC内接于⊙O,AB是⊙O的直径,OD⊥BC于点E.
(1)请你写出两个不相同的结论(不添加辅助线);
(2)连接AD,若BE=4,AC=6,求线段AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网上书店以每本24元的价格购进了600本某种畅销书籍(定价每本45元),第一个月以每本36元销售,卖出了200本;第二个月书店为了增加销售量,决定在第一个月价格的基础上降价销售,根据市场调查,每本书每降低1元,可多售出20本,但最低售价应高于购进的价格.第二个月结束后,书店将剩余的书籍捐赠给某希望学校,设第二个月每本降低元.
(1)填表:(列式,不需要化简)
时间 | 第一个月 | 第二个月 |
每本售价(元) | 36 | |
销售量(本) | 200 |
(2)如果该书店希望通过销售这批书籍获利2400元,那么第二个月每本书的售价应是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程 的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB,标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数y= (x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是( )
A. 6 B. 10 C. 2 D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com