如图,已知⊙O是等腰直角三角形ADE的外接圆,∠ADE=90°,延长ED到C使DC=AD,以AD,DC为邻边作正方形ABCD,连接AC,连接BE交AC于点H.求证:
(1)AC是⊙O的切线.
(2)HC=2AH.
考点:
切线的判定;等腰直角三角形;正方形的性质.
专题:
证明题.
分析:
(1)根据圆周角定理由∠ADE=90°得AE为⊙O的直径,再根据等腰直角三角形得到∠EAD=45°,根据正方形得到∠DAC=45°,则∠EAC=90°,然后根据切线的判定定理即可得到结论;
(2)由AB∥CD得△ABH∽△CEH,则AH:CH=AB:ED,根据等腰直角三角形和正方形的性质易得EC=2AB,则AH:CH=1:2.
解答:
证明:(1)∵∠ADE=90°,
∴AE为⊙O的直径,
∵△ADE为等腰直角三角形,
∴∠EAD=45°,
∵四边形ABCD为正方形,
∴∠DAC=45°,
∴∠EAC=45°+45°=90°,
∴AC⊥AE,
∴AC是⊙O的切线;
(2)∵四边形ABCD为正方形,
∴AB∥CD,
∴△ABH∽△CEH,
∴AH:CH=AB:ED,
∵△ADE为等腰直角三角形,
∴AD=ED,
而AD=AB=DC,
∴EC=2AB,
∴AH:CH=1:2,
即HC=2AH.
点评:
本题考查了切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了等腰直角三角形的性质、正方形的性质以及三角形相似的判定与性质.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
3 | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
A′E |
ED |
2 |
5 |
EF |
A′C′ |
5 |
7 |
5 |
7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com