精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,AB在x轴上,AB=10,以AB为直径的⊙O1与y轴正半轴交于点C,连接BC、AC,CD是⊙O1的切线,AD⊥CD于点D,tan∠CAD=
12
,抛物线y=ax2+bx+c过A、B、C三点.
(1)求证:∠CAD=∠CAB;
(2)求抛物线的解析式;
(3)判断抛物线的顶点E是否在直线CD上,并说明理由.
分析:(1)根据切线的性质得出O1C∥AD,进而得出O1A=O1C,则∠CAB=∠O1CA,即可得出答案;
(2)首先得出△CAO∽△BCO,即可得出
OC
OA
=
OB
OC
,再利用OC2=2CO(10-2CO),得出A.B,C交点坐标,即可得出抛物线解析式;
(3)首先求出△AOC≌△ADC即可得出AD=AO=8,利用O1C∥AD,得出△FO1C∽△FAD,即可求出F点坐标,求出CD解析式,再利用E点坐标代入解析式即可得出答案.
解答:(1)证明:连接O1C,
∵CD是⊙O1的切线,
∴O1C⊥CD,
∵AD⊥CD,
∴O1C∥AD,
∴∠O1CA=∠CAD,
∵O1A=O1C,
∴∠CAB=∠O1CA,
∴∠CAD=∠CAB;

(2)解:∵AB是⊙O1的直径,
∴∠ACB=90°,
∵OC⊥AB,
∴∠CAB=∠OCB,
∴△CAO∽△BCO,
OC
OA
=
OB
OC

即OC2=OA•OB,
∵tan∠CAO=tan∠CAD=
1
2

∴AO=2CO,
又∵AB=10,
∴OC2=2CO(10-2CO),
∵CO>0,
∴CO=4,AO=8,BO=2,
∴A(8,0),B(-2,0),C(0,4),
∵抛物线y=ax2+bx+c过点A,B,C三点,
∴c=4,
由题意得:
4a-2b+4=0
64a+8b+4=0

解得:
a=-
1
4
b=
3
2

∴抛物线的解析式为:y=-
1
4
x2+
3
2
x+4


(3)解:设直线DC交x轴于点F,
在△AOC和△ADC中,
∠CDA=∠COA
∠DAC=∠OAC
AC=AC

∴△AOC≌△ADC(AAS),
∴AD=AO=8,
∵O1C∥AD,
∴△FO1C∽△FAD,
O1F
AF
=
O1C
AD

∴8(BF+5)=5(BF+10),
∴BF=
10
3
,F(-
16
3
,0
);
设直线DC的解析式为y=kx+m,则
m=4
-
16
3
k+m=0

解得:
m=4
k=
3
4
?,
∴直线DC的解析式为y=
3
4
x+4,
y=-
1
4
x2+
3
2
x+4
=y=-
1
4
(x-3)2+
25
4
得顶点E的坐标为(3,
25
4
),
将E(3,
25
4
)代入直线DC的解析式y=
3
4
x+4中,
右边=
3
4
×3+4=
25
4
=左边,
∴抛物线顶点E在直线CD上.
点评:此题主要考查了二次函数的综合应用,以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,得出A,B,C点坐标是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案