精英家教网 > 初中数学 > 题目详情

【题目】如图△ABC ∠BAC=90°,AB=AC,DBC上一动点连接AD,过点AAEAD,并且始终保持AE=AD,连接CE.

(1)求证△ABD △ACE

(2)若AF平分∠DAEBCF,探究线段BD,DF,FC之间的数量关系并证明

(3)在(2)的条件下BD=3,CF=4,AD的长.

【答案】(1)证明见解析;(2)BD2+FC2=DF2理由见解析;(3).

【解析】

(1)根据垂直的定义以及直角,得到∠BAD=∠CAE,然后SAS证明即可;

(2)根据等腰直角三角形的性质得到∠B=∠ACB=45°,然后由(1)的结论得到∠ACE=45°,BD=CE,从而得到∠FCE=90°,根据勾股定理得出再根据SAS证明△DAF≌△EAF,根据全等三角形的性质得到DF=FE,从而得到结论;

(3)过点AG,根据(2)的结论得到DF=5,然后根据等腰直角三角形的性质求出DG,最后根据勾股定理求解即可.

(1)∵

又∵

在△ABD和△ACE

∴△ABD≌△ACE;

(2)理由如下:

连接FE, ∵

(1)知△ABD≌△ACE

∵AF平分

在△DAF和△EAF

∴△DAF≌△EAF

.

(3)过点AG

(2)

∴在.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算; +20160﹣| ﹣2|+1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC的三个角是∠A,B,C ,它们所对的边分别是a,b,c.c2-a2=b2②∠A=B=C;c=a=b;a=2,b=2 ,c=.上述四个条件中,能判定ABC 为直角三角形的有(  )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B 两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛PA港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.

(1)AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);

(2)甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图剪两张对边平行的纸片随意交叉叠放在一起转动其中一张重合部分构成一个四边形则下列结论中不一定成立的是( )

A. ∠DAB+∠ABC=180° B. AB=BC

C. AB=CD,AD=BC D. ∠ABC=∠ADC,∠BAD=∠BCD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图矩形OABC的边OA,OC分别与坐标轴重合并且点B的坐标为.将该矩形沿OB折叠使得点A落在点E,OEBC的交点为D.

(1)求证△OBD为等腰三角形

(2)求点E的坐标

(3)坐标平面内是否存在一点F,使得以点B,E,F,O为顶点的四边形是平行四边形若存在请直接写出点F的坐标若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12OC边长为3.

(1)数轴上点A表示的数为________

(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.

①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?

  ②设点A的移动距离AA′x.

  ()S4时,求x的值;

  )D为线段AA′的中点,点E在线段OO′上,且OEOO′,当点DE所表示的数互为相反数时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD,将沿BE折叠,使点A恰好落在对角线BDF处,则DE的长是  

A. 3 B. C. 5 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1:y1=2x+3与直线l2:y2=kx﹣1相交于点A,A横坐标为﹣1,且直线l1x轴交于B点,与y轴交于D点,直线l2y轴交于C点.

(1)求出A点的坐标及直线l2的解析式;

(2)连接BC,求出SABC

查看答案和解析>>

同步练习册答案