精英家教网 > 初中数学 > 题目详情

矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为 


3或6 

解:①∠EFC=90°时,如图1,

∵∠AFE=∠B=90°,∠EFC=90°,

∴点A、F、C共线,

∵矩形ABCD的边AD=8,

∴BC=AD=8,

在Rt△ABC中,AC===10,

设BE=x,则CE=BC﹣BE=8﹣x,

由翻折的性质得,AF=AB=6,EF=BE=x,

∴CF=AC﹣AF=10﹣6=4,

在Rt△CEF中,EF2+CF2=CE2

即x2+42=(8﹣x)2

解得x=3,

即BE=3;

②∠CEF=90°时,如图2,

由翻折的性质得,∠AEB=∠AEF=×90°=45°,

∴四边形ABEF是正方形,

∴BE=AB=6,

综上所述,BE的长为3或6.

故答案为:3或6.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).

(1)求证:方程总有两个实数根;

(2)若方程的两个实数根都是整数,求正整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为(  )

 

A.

4

B.

3

C.

4.5

D.

5

查看答案和解析>>

科目:初中数学 来源: 题型:


数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).

探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.

探究一:计算+++…+

第1次分割,把正方形的面积二等分,其中阴影部分的面积为

第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+

第3次分割,把上次分割图中空白部分的面积继续二等分,…;

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是

根据第n次分割图可得等式:+++…+=1﹣

探究二:计算+++…+

第1次分割,把正方形的面积三等分,其中阴影部分的面积为

第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+

第3次分割,把上次分割图中空白部分的面积继续三等分,…;

第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是

根据第n次分割图可得等式:+++…+=1﹣

两边同除以2,得+++…+=

探究三:计算+++…+

(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:计算+++…+

(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)

根据第n次分割图可得等式: +++…+=1 

所以,+++…+=  

拓广应用:计算 +++…+

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,直线a、b被直线c所截,a∥b,∠1+∠2的度数是  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是(  )

 

A.

S1=S2

B.

2S1=S2

C.

3S1=S2

D.

4S1=S2

查看答案和解析>>

科目:初中数学 来源: 题型:


在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:

(1)A、C两村间的距离为   km,a=   

(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;

(3)乙在行驶过程中,何时距甲10km?

查看答案和解析>>

科目:初中数学 来源: 题型:


已知点A(1,y1),B(﹣2,y2)在反比例函数y=(k>0)的图象上,则y1  y2(填“>”“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:


下列图形中,是正方体表面展开图的是(  )

 

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案