精英家教网 > 初中数学 > 题目详情

已知抛物线 a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:

x

―1

0

3

0

0

(1)求y1与x之间的函数关系式;

(2)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).

①求y2与x之间的函数关系式;

②当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.

 

【答案】

解:(1)∵抛物线经过点(0,),∴c=。∴

∵点(-1,0)、(3,0)在抛物线上,

,解得

∴y1与x之间的函数关系式为:

(2)∵,∴

∴直线l为x=1,顶点M(1,3).

  ①由题意得,t≠3,

如图,记直线l与直线l′交于点C(1,t),

当点A′与点C不重合时,

∵由已知得,AM与BP互相垂直平分,

∴四边形ANMP为菱形。∴PA∥l。

又∵点P(x,y2),∴点A(x,t)(x≠1)。∴

过点P作PQ⊥l于点Q,则点Q(1,y2),∴

在Rt△PQM中,∵,即

整理得,,即

当点A与点C重合时,点B与点P重合,

∴P(1,)。∴P点坐标也满足上式。

∴y2与x之间的函数关系式为(t≠3)。

②根据题意,借助函数图象:

当抛物线y2开口方向向上时,6-2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),

∵3>,∴不合题意。

当抛物线y2开口方向向下时,6-2t<0,即t>3时,

若3t-11≠0,要使y1<y2恒成立,只要抛物线开口方向向下,且顶点(1,)在x轴下方,

∵3-t<0,只要3t-11>0,解得t>,符合题意。

若3t-11=0,,即t=也符合题意。

综上所述,可以使y1<y2恒成立的t的取值范围是t≥

【解析】

试题分析:(1)先根据物线经过点(0, )得出c的值,再把点(-1,0)、(3,0)代入抛物线y1的解析式即可得出y1与x之间的函数关系式。

(2)先根据(I)中y1与x之间的函数关系式得出顶点M的坐标.

①记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,由已知得,AM与BP互相垂直平分,故可得出四边形ANMP为菱形,所以PA∥l,再由点P(x,y2)可知点A(x,t)(x≠1),所以,过点P作PQ⊥l于点Q,则点Q(1,y2),故,在Rt△PQM中,根据勾股定理即可得出y2与x之间的函数关系式,再由当点A与点C重合时,点B与点P重合可得出P点坐标,故可得出y2与x之间的函数关系式。

②据题意,借助函数图象:

当抛物线y2开口方向向上时,可知6-2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1, ),由于3>,所以不合题意。

当抛物线y2开口方向向下时,6-2t<0,即t>3时,求出的值。若3t--11≠0,要使y1<y2恒成立,只要抛物线方向向下及且顶点(1, )在x轴下方,因为3-t<0,只要3t-11>0,解得t>,符合题意;若3t-11=0,,即t=也符合题意。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的精英家教网正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为
152

(1)求此抛物线的解析式;
(2)求直线AC和BC的方程;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-
140
x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E、F处要安装两盏警示灯,求这两盏灯的水平距离EF(精确到1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2(a>0)上有A、B两点,它们的横坐标分别为-1,2.如果△AOB(O是坐标原点)是直角三角形,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线经过点A(1,0)、B(2,-3)、C(0,4)三点.
(1)求此抛物线的解析式;
(2)如果点D在这条抛物线上,点D关于这条抛物线对称轴的对称点是点C,求点D的坐标.

查看答案和解析>>

同步练习册答案