精英家教网 > 初中数学 > 题目详情

如图,将正方形ABCD的四个顶点,分别沿着边逆时针平移,如A移动到E,并使移动的距离都等于AE,得到新四边形EFGH,量椓浚?阋凰悖?卸—EFGH是什么四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
 

又AG=AE,AF=AF
∴△GAF≌
 

 
=EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
1
2
∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=
1
2
∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将正方形纸片按图甲中的虚线对折得到图乙,再对折得到图丙,在图丙中沿虚线将△ABC(AB≠BC)剪下,再将△ABC展开铺平所得图形是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如果AF=4,AB=7:
①写出图中的旋转过程;
②求BE的长;
③在图中作出延长BE与DF的交点G,并说明BG⊥DF.
(2)如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针转动一个角度到A1BC1的位置,使得点A、B、C1在同一条直线上,那么这个角度等于
A
A

A.120°    B.90°  C.60°     D.30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,将三角形ABC进行平移,使点A的对应点为点A′
(1)请你画出平移后所得的三角形A′B′C′(画图工具不限).
(2)若每个小正方形的面积为1,求线段AC在平移中扫过的面积.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省盐城市建湖县近湖中学九年级(上)数学周练作业(4)(解析版) 题型:解答题

探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠______.
又AG=AE,AF=AF
∴△GAF≌______.
∴______=EF,故DE+BF=EF.

(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.

(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

查看答案和解析>>

同步练习册答案