¾«Ó¢¼Ò½ÌÍøÉèÒ»´Îº¯Êýy=k1x+b1£¨k1¡Ù0£©µÄͼÏóΪl1£¬Ò»´Îº¯Êýy=k2x+b2£¨k2¡Ù0£©µÄͼÏóΪֱÏßl2£¬Èôk1=k2£¬ÇÒb1¡Ùb2£¬ÎÒÃǾͳÆÖ±Ïßl1ÓëÖ±Ïßl2»¥ÏàƽÐУ®½â´ðÏÂÃæµÄÎÊÌ⣺
£¨1£©Çó¹ýµãP£¨1£¬4£©ÇÒÓëÒÑÖªÖ±Ïßy=-2x-1ƽÐеÄÖ±ÏßlµÄº¯Êý±í´ïʽ£¬²¢»­³öÖ±ÏßlµÄͼÏó£»
£¨2£©É裨1£©ÖеÄÖ±Ïßl·Ö±ðÓëxÖá¡¢yÖá½»ÓÚA¡¢BÁ½µã£¬Ö±Ïßy=-2x-1·Ö±ðÓëxÖá¡¢yÖá½»ÓÚC¡¢DÁ½µã£¬ÇóËıßÐÎABCDµÄÃæ»ý£®
·ÖÎö£º£¨1£©µ±Á½¸öÒ»´Îº¯ÊýµÄ±ÈÀýϵÊýÏàµÈʱ£¬Á½º¯ÊýͼÏóƽÐУ¬¾Ý´Ë¿ÉµÃµ½Ö±ÏߵıÈÀýϵÊýµÄÖµ£¬È»ºóÀûÓøæËߵľ­¹ýµÄÒ»µãµÄ×ø±ê£¬Çóº¯ÊýµÄ±í´ïʽ£»
£¨2£©½«Á½Ö±ÏßÓë×ø±êÖáΧ³ÉµÄËıßÐεÄÃæ»ýת»¯ÎªÁ½¸öÈý½ÇÐÎÃæ»ýµÄºÍÀ´Çó£®
½â´ð£º½â£º£¨1£©¡ßÖ±ÏßlÓëÖ±Ïßy=-2x-1ƽÐУ¬¾«Ó¢¼Ò½ÌÍø
¡àÉèÖ±ÏßlµÄ½âÎöʽΪy=-2x+b£¬
¡ß¹ýµãP£¨1£¬4£©£¬
¡à4=-2¡Á1+b£¬
½âµÃ£ºb=6£¬
¡àÖ±ÏßlµÄ½âÎöʽΪ£ºy=-2x+6£®

£¨2£©Áîy=-2x-1=0£¬µÃx=-
1
2
£¬Áîx=0£¬µÃy=-1£¬
¡àCµãµÄ×ø±êΪ£¨-
1
2
£¬0£©£¬DµãµÄ×ø±êΪ£¨0£¬-1£©£¬
Áîy=-2x+6=0£¬µÃx=3£¬Áîx=0£¬µÃy=6£¬
¡àµãAµÄ×ø±ê£¨3£¬0£©£¬µãBµÄ×ø±êΪ£¨0£¬6£©£¬
¡àSËıßÐÎABCD=S¡÷ABC+S¡÷DCA
=
1
2
¡Á
7
2
¡Á6+
1
2
¡Á
7
2
¡Á1
=
49
4
µãÆÀ£º±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄÏà¹Ø֪ʶ£¬ÌرðÊÇÇóÒ»´Îº¯ÊýÓëÁ½Ö±ÏߵĽ»µã×ø±ê£¬½ø¶øÇóÏà¹ØͼÐεÄÃæ»ý£¬¸üÊÇÒ»¸ö¾­¾Ã²»Ë¥µÄÀÏ¿¼µã£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃ漸ºÎÖУ¬ÎÒÃÇѧ¹ýÁ½ÌõÖ±ÏßƽÐеĶ¨Ò壮ÏÂÃæ¾ÍÁ½¸öÒ»´Îº¯ÊýµÄͼÏóËùÈ·¶¨µÄÁ½ÖªÖ±Ïߣ¬¸ø³öËüÃÇƽÐеĶ¨Ò壺
ÉèÒ»´Îº¯Êýy=k1x+b£¨k1¡Ù0£©µÄͼÏóΪֱÏßl1£¬Ò»´Îº¯Êýy=k2x+b£¨k2¡Ù0£©µÄͼÏóΪֱÏßl2£¬Èôk1=k2£¬ÇÒb1¡Ùb2£¬ÎÒÃǾͳÆÖ±Ïßl1ÓëÖ±Ïßl2»¥ÏàƽÐУ®Èçͼ£¬½«Ö±Ïßy=4xÑØyÖáÏòÏÂƽÒƺ󣬵õ½µÄÖ±ÏßÓëxÖá½»ÓÚµãA£¨
9
4
£¬0
£©£¬Ó뾫Ӣ¼Ò½ÌÍøË«ÇúÏßy=
k
x
£¨x£¾0£©½»ÓÚµãB£®
£¨1£©ÇóÖ±ÏßABµÄ½âÎöʽ£»
£¨2£©ÈôµãBµÄ×Ý×ø±êΪm£¬ÇóË«ÇúÏß½âÎöʽ£¨Óú¬mµÄ´úÊýʽ±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÃæµÄ²ÄÁÏ£ºÔÚƽÃ漸ºÎÖУ¬ÎÒÃÇѧ¹ýÁ½ÌõÖ±ÏßƽÐеĶ¨Ò壮ÏÂÃæ¾ÍÁ½¸öÒ»´Îº¯ÊýµÄͼÏóËùÈ·¶¨µÄÁ½ÌõÖ±Ïߣ¬¸ø³öËüÃÇƽÐеĶ¨Ò壺ÉèÒ»´Îº¯Êýy=k1x+b1£¨k1¡Ù0£©µÄͼÏóΪֱÏßl1£¬Ò»´Îº¯Êýy=k2x+b2£¨k2¡Ù0£©µÄͼÏóΪֱÏßl2£¬Èôk1=k2£¬ÇÒb1¡Ùb2£¬¾«Ó¢¼Ò½ÌÍøÎÒÃǾͳÆÖ±Ïßl1ÓëÖ±Ïßl2»¥ÏàƽÐУ®½â´ðÏÂÃæµÄÎÊÌ⣺
£¨1£©Çó¹ýµãP£¨1£¬4£©ÇÒÓëÒÑÖªÖ±Ïßy=-2x-1ƽÐеÄÖ±ÏßlµÄº¯Êý±í´ïʽ£¬²¢»­³öÖ±ÏßlµÄͼÏó£»
£¨2£©ÉèÖ±Ïßl·Ö±ðÓëyÖá¡¢xÖá½»ÓÚµãA¡¢B£¬Èç¹ûÖ±Ïßm£ºy=kx+t£¨t£¾0£©ÓëÖ±ÏßlƽÐÐÇÒ½»xÖáÓÚµãC£¬Çó³ö¡÷ABCµÄÃæ»ýS¹ØÓÚtµÄº¯Êý±í´ïʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¶¨º£ÇøÄ£Ä⣩ÉèÒ»´Îº¯Êýy=k1x+b1£¨k1¡Ù0£©£¬y=k2x+b2£¨k2¡Ù0£©£¬Ôò³Æº¯Êýy=
k1+k2
2
x+
b1+b2
2
Ϊ´ËÁ½¸öº¯ÊýµÄƽ¾ùº¯Êý£®
£¨1£©ÈôÒ»´Îº¯Êýy=ax+1£¬y=-4x+3µÄƽ¾ùº¯ÊýΪy=3x+2£¬ÇóaµÄÖµ£»
£¨2£©ÈôÓÉÒ»´Îº¯Êýy=x+1£¬y=kx+1µÄͼÏóÓëxÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪ1£¬ÇóÕâÁ½¸öº¯ÊýµÄƽ¾ùº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÃæµÄ²ÄÁÏ£º
ÔÚƽÃ漸ºÎÖУ¬ÎÒÃÇѧ¹ýÁ½ÌõÖ±ÏßƽÐеĶ¨Ò壮ÏÂÃæ¾ÍÁ½¸öÒ»´Îº¯ÊýµÄͼÏóËùÈ·¶¨µÄÁ½ÌõÖ±Ïߣ¬¸ø³öËüÃÇƽÐеĶ¨Ò壺ÉèÒ»´Îº¯Êýy=k1x+b1£¨k1¡Ù0£©µÄͼÏóΪֱÏßl1£¬Ò»´Îº¯Êýy=k2x+b2£¨k2¡Ù0£©µÄͼÏóΪֱÏßl2£¬Èôk1=k2£¬ÇÒb1¡Ùb2£¬ÎÒÃǾͳÆÖ±Ïßl1ÓëÖ±Ïßl2»¥ÏàƽÐУ®
½â´ðÏÂÃæµÄÎÊÌ⣺
£¨1£©ÒÑÖªÒ»´Îº¯Êýy=-2xµÄͼÏóΪֱÏßl1£¬Çó¹ýµãP£¨1£¬4£©ÇÒÓëÒÑÖªÖ±Ïßl1ƽÐеÄÖ±Ïßl2µÄº¯Êý±í´ïʽ£¬²¢ÔÚ×ø±êϵÖл­³öÖ±Ïßl1ºÍl2µÄͼÏó£»
£¨2£©ÉèÖ±Ïßl2·Ö±ðÓëyÖá¡¢xÖá½»ÓÚµãA¡¢B£¬¹ý×ø±êÔ­µãO×÷OC¡ÍAB£¬´¹×ãΪC£¬Çól1ºÍl2Á½Æ½ÐÐÏßÖ®¼äµÄ¾àÀëOCµÄ³¤£»
£¨3£©ÈôQΪOAÉÏÒ»¶¯µã£¬ÇóQP+QBµÄ×îСֵ£¬²¢ÇóÈ¡µÃ×îСֵʱQµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸