【题目】如图,在中,,将绕点顺时针旋转一定角度后得到,连接,过点作交于点,若,且,则的长为__________.
【答案】
【解析】
利用折叠的性质可证得△ABC≌△A1BC1 , 由此可以推出AB=A1B,BC=B1C,∠ABC=∠A1BC1 , 再证明∠A1BA=∠C1BC,利用有两组角对应相等的两三角形相似,可证△A1BA∽△C1BC,利用相似三角形的对应边成比例,可得到AB与BC之间的数量关系,利用锐角三角函数的定义及勾股定理,可以求出AB,BC的长,过C1作C1Q⊥BC交BC,AN于点Q,点P,设PC1=x,CQ=y,可建立关于x,y的方程组,解方程组求出x,y的值,即可求出AD的长.
根据题意,可得△ABC≌△A1BC1 ,
∴AB=A1B,BC=B1C,∠ABC=∠A1BC1,
∵∠ABC=∠A1BA+∠ABC1 , ∠A1BC1=∠C1BC+∠ABC1,
∴∠A1BA=∠C1BC,
∴△A1BA∽△C1BC,
∵CC1= AA1,
∴AB= BC,
∴sin∠BAC=sin∠BA1D= ,
在Rt△ABC中,设AB=5x,BC=3x,
AB2=AC2+BC2 , 即(5x)2=162+(3x)2,
解方程(5x)2=162+(3x)2 , 得x1=4,x2=-4(舍),
∴BC=BC1=DC1=12, AC=A1C1=16,
过C1作C1Q⊥BC交BC,AN于点Q,点P,
设PC1=x,CQ=y,,
解得: 或 ,
∴AD=12+4 或12-4 ,
∵AD<BC,
∴AD=12-4 .
科目:初中数学 来源: 题型:
【题目】已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合),以AD为边做正方形ADEF,连接CF.
(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系 .
(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;
(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是O的直径,AB=4,C为的三等分点(更靠近A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为( )
A.2B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣2x2﹣4x+6.
(1)用配方法求出函数的顶点坐标;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽,赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的小正方形组成的.设直角三角形的两直角边长为,且满足,若小正方形的面积为11,则大正方形的面积为( )
A.15B.17C.30D.34
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请阅读下列材料:
问题:已知方程,求一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为,则,所以.
把代入已知方程,得
化简,得
故所求方程为.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式).
(1)已知方程,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为: .
(2)已知关于的一元二次方程有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数;
(3)已知关于的方程有两个实数根,求一个方程,使它的根分别是已知方程根的平方.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴相交于A(3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C.D是二次函数图象上的一对对称点,一次函数的图象过点B,D.
(1)D点坐标;
(2)求二次函数的解析式;
(3)根据图象直接写出使一次函数值小于二次函数值的x的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.
表1:四种款式电脑的利润
电脑款式 | A | B | C | D |
利润(元/台) | 160 | 200 | 240 | 320 |
表2:甲、乙两店电脑销售情况
电脑款式 | A | B | C | D |
甲店销售数量(台) | 20 | 15 | 10 | 5 |
乙店销售数量(台)8 | 8 | 10 | 14 | 18 |
试运用统计与概率知识,解决下列问题:
(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为 ;
(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | 3 | … |
接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com