【题目】如图1,有一块三角形余料ABC,它的边BC=60mm,高AD=40mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?请你计算。
变式(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图2,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.
变式(2)如果原题中所要加工的零件只是一个矩形,如图3,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
【答案】(1)这个矩形零件的两条边长分别为mm,mm;
(2)S有最大值时,PN=30mm,PQ=20mm.
【解析】试题分析:(1)设正方形的边长为xmm,则PN=PQ=ED=x,AE=AD-ED=80-x,通过证明△APN∽△ABC,利用相似比可得到,然后根据比例性质求出x即可;
(2)由于矩形是由两个并排放置的正方形所组成,则可设PQ=x,则PN=2x,AE=40-x,然后与(1)的方法一样求解;(3)设PN=x,用PQ表示出AE的长度,然后根据相似三角形对应高的比等于相似比列出比例式并用x表示出PN,然后根据矩形的面积公式列式计算,再根据二次函数的最值问题解答.
试题解析:(1)如图1,设正方形的边长为xmm,则PN=PQ=ED=x,∴AE=ADED=40x,∵PN∥BC,
∴△APN∽△ABC,
∴,即,
解得x=24.
∴加工成的正方形零件的边长是24mm;
(2)如图2,设PQ=x,则PN=2x,AE=40x,
∵PN∥BC,
∴△APN∽△ABC,
∴,即,
解得:x=,
∴2x=,
∴这个矩形零件的两条边长分别为mm, mm;
(3)如图3,设PN=x(mm),矩形PQMN的面积为S(mm2),
由条件可得△APN∽△ABC,
∴,即,
解得:PQ= .
则S=PNPQ=x()=x2+40x= (x30)2+600,
故S的最大值为600mm2,此时PN=30mm,PQ=40×30=20(mm).
科目:初中数学 来源: 题型:
【题目】如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.
(1)求证:△ABC≌△DEF;
(2)指出图中所有平行的线段,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.
(1)求证:四边形ACED是矩形;
(2)若∠AOD=120°,AC=4,求对角线CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com