分析 (1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;
(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=$\frac{1}{2}$GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系.
解答 (1)证明:∵GE∥DF,
∴∠EGF=∠DFG.
∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG.
∴GD=DF.
∴DG=GE=DF=EF.
∴四边形EFDG为菱形.
(2)解:如图所示:连接DE,交AF于点O.
∵四边形EFDG为菱形,
∴GF⊥DE,OG=OF=$\frac{1}{2}$GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA,
∴△DOF∽△ADF.
∴$\frac{DF}{AF}$=$\frac{FO}{DF}$,即DF2=FO•AF.
∵FO=$\frac{1}{2}$GF,DF=EG,
∴EG2=$\frac{1}{2}$GF•AF.
点评 本题主要考查了相似三角形的判定与性质以及菱形的判定等知识,解答本题主要应用了菱形的判定和性质、相似三角形的性质和判定,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com