精英家教网 > 初中数学 > 题目详情
若两个相似三角形对应边上的中线比为2:3,且面积之和为65,则这两个三角形的面积分别为   
【答案】分析:根据相似三角形对应边上的中线的比等于相似比,面积的比等于相似比的平方求出两三角形的面积的比,然后列式进行计算即可得解.
解答:解:∵两个相似三角形对应边上的中线比为2:3,
∴它们的相似比为2:3,
∴它们的面积的比为4:9,
∵两三角形面积之和为65,
∴它们的面积分别为:65×=20,
65×=45.
故答案为:20,45.
点评:本题考查了相似三角形对应中线的比等于相似比,面积的比等于相似比的平方的性质,熟记性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、若两个相似三角形对应高的比是3:1,则它们的周长比是
3:1

查看答案和解析>>

科目:初中数学 来源: 题型:

若两个相似三角形对应边上的中线比为2:3,且面积之和为65,则这两个三角形的面积分别为
20,45
20,45

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若两个相似三角形对应边上的中线比为2:3,且面积之和为65,则这两个三角形的面积分别为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若两个相似三角形对应高的比是3:1,则它们的周长比是______.

查看答案和解析>>

同步练习册答案