精英家教网 > 初中数学 > 题目详情
20.(1)计算:(-2)2+($\frac{\sqrt{2}-\sqrt{3}}{2}$)0-$\sqrt{4}$-($\frac{1}{2}$)-1
(2)解方程:$\frac{x+1}{x-1}-\frac{4}{{x}^{2}-1}=1$.

分析 (1)原式利用乘方的意义,零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答 解:(1)原式=4+1-2-2=1;
(2)去分母得:x2+2x+1-4=x2-1,
解得:x=1,
经检验x=1是增根,分式方程无解.

点评 此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.计算($\sqrt{3}$-$\sqrt{2}$)0-(-$\frac{1}{2}$)2+2-2-(-1)-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算下列各式
(1)2cos60°-3tan30°+2tan45°             
(2)(sin45° )2-tan30° sin60° 
(3)2cos45°+sin30° cos60°+cos30°  
(4)$\frac{sin60°}{1+cos60°}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.化简:($\frac{2{x}^{2}+2x}{{x}^{2}-1}$-$\frac{{x}^{2}-x}{{x}^{2}-2x+1}$)$÷\frac{x}{x+1}$,并解答:原式的值能等于-1吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.一克黄金260元,买x克黄金的总价为y元,则y与x的关系式为y=260x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△AEC和△DBF中,∠E=∠F,点A、B、C、D在同一条直线上,AB=CD、CE∥BF,求证:△AEC≌△DBF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、B的坐标分别为(-1,-1),(-3,2).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于x轴对称的△A′B′C′,并写出点C′的坐标;
(3)判断△A′B′C′的形状,不需要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.化简:$\frac{a-b}{a+b}$+$\frac{a+3b}{a+b}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:
(1)$\frac{3x}{x-4y}$+$\frac{x+y}{4y-x}$-$\frac{7y}{x-4y}$;
(2)(-2)-3+(-$\frac{1}{2}$)-4+2-1×2-3-(π-3.14)0
(3)$\frac{{x}^{2}}{x-1}$-x-1;
(4)($\frac{x}{x-y}$-$\frac{2y}{x-y}$)•$\frac{xy}{x-2y}$×($\frac{1}{x}$-$\frac{1}{y}$).

查看答案和解析>>

同步练习册答案