分析 (1)利用等角的余角相等得到∠B=∠ACD,则利用有两组角对应相等的两三角形相似可判断△ADC∽△CDB;
(2)利用相似比得到$\frac{AD}{CD}$=$\frac{CD}{BD}$,然后利用比例性质求CD.
解答 (1)证明:∵CD⊥AB于D,
∴∠CDA=∠CDB=90°,
∴∠BCD+∠B=90°
∵∠ACB=90°,即∠BCD+∠ACD=90°,
∴∠B=∠ACD,
∴△ADC∽△CDB;
(2)解:∵△ADC∽△CDB,
∴$\frac{AD}{CD}$=$\frac{CD}{BD}$,即$\frac{2}{CD}$=$\frac{CD}{6}$,
∴CD=2$\sqrt{3}$.
点评 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;再运用相似三角形的性质时主要利用相似比进行几何计算.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 垂线段就是垂直于已知直线的线段 | |
B. | 垂线段就是垂直于已知直线并且与已知直线相交的线段 | |
C. | 垂线段是一条竖起来的线段 | |
D. | 过直线外一点向该直线作垂线,这一点到垂足之间的线段叫垂线段 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2017届江苏省无锡市九年级下学期第一次模拟考试数学试卷(解析版) 题型:填空题
在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60º,则线段CD的长的最小值为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com