分析 (1)连接CO并延长交⊙O于M,连接AM,根据两组对应边的比相等且相应的夹角相等的两个三角形相似得到△PAC∽△PCB,从而得到∠PCA=∠B,再根据角之间的关系可得到CM⊥PC即PC是⊙O的切线;
(2)连接AO,并延长AO交⊙O于N,连接BN,根据同弧所对角相等得到∠N=∠ACB,已知AN的长及sin∠ACB的值,根据三角函数公式即可求得AB的长;
(3)连接OD交AB于F,由已知可推出△PCA∽△PBC,根据对应边的相似比相等可求得PA,PC的长,再根据勾股定理求得OF的长,那么再求DE的长度就不难了.
解答 (1)证明:连接CO并延长交⊙O于M,连接AM,如答图1,
∵PC2=PA•PB,
∴$\frac{PC}{PA}$=$\frac{PB}{PC}$.
∵∠P=∠P,
∴△PAC∽△PCB,∠PCA=∠B.
∵∠B=∠M,
∴∠M=∠PCA.
∵CM是直径,
∴∠MAC=90°.
∴∠ACM+∠M=90°.
∴∠ACM+∠PCA=90°.
即∠PCM=90°.
∴CM⊥PC.
∴PC是⊙O的切线.
(2)解:连接AO,并延长AO交⊙O于N,连接BN,如答图2,
∵AN是直径,
∴∠ABN=90°∠N=∠ACB,AN=12.
在Rt△ABN中,AB=ANsin∠ACB=12sin∠ACB=12×$\frac{{\sqrt{5}}}{3}$=4$\sqrt{5}$.
(3)解:连接OD交AB于F,连接CD.如答图3,
∴OD⊥AB.
∵D是劣弧AB的中点,
∴∠ACD=∠BCD.
∵∠PCA=∠B,
∴∠PCE=∠PEC.
∴PC=PE由△PCA∽△PBC得PC=3PA.
∵PC2=PA•PB,
∴9PA2=PA•PB.
∴9PA=PB=PA+AB.
∴8PA=AB=4$\sqrt{5}$.
∴PA=$\frac{\sqrt{5}}{2}$.
∴PC=PE=$\frac{3\sqrt{5}}{2}$.
AE=$\sqrt{5}$,AB=4$\sqrt{5}$,AF=2$\sqrt{5}$,EF=$\sqrt{5}$.
在Rt△OAF中,可求得OF=4,
∴DF=OD-OF=6-4=2,
∴DE=3.
点评 本题考查了圆的综合题,需要掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了勾股定理和相似三角形的判定与性质.
科目:初中数学 来源: 题型:选择题
A. | 1.4m | B. | 1.6m | C. | 1.8m | D. | 2m |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 12 cm | B. | 16 cm | C. | 20 cm | D. | 24 cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com