精英家教网 > 初中数学 > 题目详情
11、如图,点D是等腰直角△ABC斜边AB上的点,将△ACD绕点C逆时针旋转,使它与△BCD′重合,则∠D′BA=
90
度.
分析:根据旋转的性质,△ACD≌△BCD′,∠A=∠CBD′,因为△ABC为等腰直角三角形,所以∠A+∠CBD=90°,从而得出∠CBA+∠CBD′=90°,即可得出结论.
解答:解:根据旋转的性质,
得出:△ACD≌△BCD′,
∴∠A=∠CBD′,
∵△ABC为等腰直角三角形,
∴∠A+∠CBD=90°,
∴∠D′BA=∠CBD+∠CBD′=90°.
故答案为90°.
点评:本题主要考查了旋转的性质:①对应点到旋转中心的距离相等,②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全,同时考查了等腰直角三角形的性质,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,点O是等腰直角△ABC斜边AB的中点,D为BC边上任意一点.
操作:在图中作OE⊥OD交AC于E,连接DE.
问题:(1)观察并猜测,无论∠DOE绕着点O旋转到任何位置,OD和OE始终有何数量关系?(直接写出答案)
 

(2)如图所示,若BD=2,AE=4,求△DOE的面积.
(说明:如果经过思考分析,没有找到解决(2)中的问题的方法,请直接验证(1)中猜测的结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

27、附加题:已知:如图,点O是等腰直角△ABC斜边AB的中点,D为BC边上任意一点.
操作:在图12中作OE⊥OD交AC于E,连接DE.
探究OD、BD、CD三条线段之间有何等量关系?请探究说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

28、如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.
(1)试说明△COD是等腰直角三角形;
(2)当α=95°时,试判断△BOD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.
(1)试说明△COD是等腰直角三角形;
(2)当α=95°时,试判断△BOD的形状,并说明理由.

查看答案和解析>>

同步练习册答案