精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC是⊙O的内接三角形,AB是⊙O的直径,OFAB,交AC于点F,点EAB的延长线上,射线EM经过点C,且∠ACE+AFO=180°.

(1)求证:EM是⊙O的切线;

(2)若∠A=E,BC=,求阴影部分的面积.(结果保留和根号).

【答案】(1)详见解析;(2)

【解析】

(1)连接OC,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A,根据等腰三角形的性质得到∠OCE=90°,得到OC⊥CE,于是得到结论;
(2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论.

:(1)连接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO+90°=180°,
∵∠ACE+∠AFO=180°,
∴∠ACE=90°+∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
∴∠OCE=90°,
∴OC⊥CE,
∴EM是⊙O的切线;
(2)∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
∴∠ACO=∠BCE,
∵∠A=∠E,
∴∠A=∠ACO=∠BCE=∠E,
∴∠ABC=∠BCO+∠E=2∠A,
∴∠A=30°,
∴∠BOC=60°,
∴△BOC是等边三角形,
∴OB=BC=
∴阴影部分的面积=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别在边AD、AB、BC、CD上,则tan∠DEH=( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我省中小学积极开展综合实践活动,某校准备组织开展四项综合实践活动:“A.我是非遗小传人,B.学做家常餐,C.爱心义卖行动,D.找个岗位去体验”.为了解学生最喜爱哪项综合实践活动,随机抽取部分学生进行问卷调查(每位学生只能选择一项),将调查结果绘制成下面两幅不完整的统计图,请结合图中提供的信息回答下列问题:

(1)本次一共调查了 名学生,在扇形统计图中,m的值是

(2)补全条形统计图;

(3)若该校共有1200名学生,估计最喜爱BC项目的学生一共有多少名?

(4)现有最喜爱A,B,C,D活动项目的学生各一人,学校要从这四人中随机选取两人交流活动体会,请用列表或画树状图的方法求出恰好选取最喜爱CD项目的两位学生的概率.

最喜爱各项综合实践活动条形统计图 最喜爱各项综合实践活动扇形统计图

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮从家出发步行到公交站台后,等公交车去学校,如图, 折线表示这个过程中行程 s (千米)与所花时间 t (分)之间的关系, 列说法错误的是(

A.他家到公交车站台需行 1 千米B.他等公交车的时间为 4 分钟

C.公交车的速度是 500 /D.他步行与乘公交车行驶的平均速度300米/分钟

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDAB相交,∠BAC=40°.

(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;

(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DPAC,求∠OCD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,两个完全相同的三角形纸片重合放置,其中

1)操作发现:如图2,固定,使绕点旋转,当点恰好落在边上时,填空:①线段的位置关系是________;②设的面积为的面积为,则的数量关系是_____

2)猜想论证:当绕点旋转到如图3所示的位置时,请猜想(1)中的数量关系是否仍然成立?若成立,请证明;若不成立,请说明理由.

3)拓展探究:已知平分于点(如图4).若在射线上存在点,使,请求相应的的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种商品的标价为500/件,经过两次降价后的价格为320/件,并且两次降价的百分率相同.

1)求该种商品每次降价的百分率;

2)若该种商品进价为300/件,两次降价后共售出此种商品100件,为使两次降价销售的总利润不少于3500元.问第一次降价后至少要售出该种商品多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴、轴分别交于两点,的中点,上一点,四边形是菱形,则的面积为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形 ABCD 中,AB3BC4EF 是对角线 AC 上的两个动点,分 别从 AC 同时出发相向而行,速度均为每秒 1 个单位长度,运动时间为 t 秒,其中 0 t 5

1)若 GH 分别是 ABDC 中点,求证:四边形 EGFH 是平行四边形(EF 相遇时除外);

2)在(1)条件下,若四边形 EGFH 为矩形,求 t 的值;

3)若 GH 分别是折线 ABCCDA 上的动点,与 EF 相同的速度同时出发,若 四边形 EGFH 为菱形,求 t 的值.

查看答案和解析>>

同步练习册答案