精英家教网 > 初中数学 > 题目详情
精英家教网如图,⊙O和⊙O′都经过点A和点B,点P在BA的延长线上,过P作⊙O的割线PCD交⊙O于C、D,作⊙O′的切线PE切⊙O′于E,若PC=4,CD=5,则PE等于(  )
A、6
B、2
5
C、20
D、36
分析:根据割线定理得PA•PB=PC•PD,根据切割线定理得PE2=PA•PB,所以PE2=PC•PD,从而可求得PE的长.
解答:解:∵PA•PB=PC•PD,PE2=PA•PB,PC=4,CD=5,
∴PE2=PC•PD=36,
∴PE=6.
故选A.
点评:注意:割线定理和切割线定理的运用必须在同一个圆中.这里借助割线PAB,把要求的线段和已知线段建立了关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.则图中相似三角形(相似比为1 除外)有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q。

⑴请写出图中各对相似三角形(相似比为1 除外);

(2)求BP∶PQ∶QR

查看答案和解析>>

科目:初中数学 来源: 题型:

如图四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q。

⑴请写出图中各对相似三角形(相似比为1 除外);

(2)求BP∶PQ∶QR

查看答案和解析>>

科目:初中数学 来源: 题型:

如图∆ABC和∆ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,试说明:(1)∆ACE≌∆BCD;(2)AD2+DB2=DE2

查看答案和解析>>

科目:初中数学 来源:2010-2011学年浙江省绍兴市嵊州市九年级(上)期末数学试卷(解析版) 题型:选择题

如图四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.则图中相似三角形(相似比为1 除外)有( )

A.一对
B.二对
C.三对
D.四对

查看答案和解析>>

同步练习册答案