精英家教网 > 初中数学 > 题目详情
已知如下图所示,∠B=∠C,点B、A、E在同一条直线上,∠EAC=∠B+∠C,且AD平分∠EAC,试说明AD∥BC的理由。
解:理由是:
∵AD平分∠EAC,
∴∠1=∠EAC,
∵∠EAC=∠B+∠C,∠B=∠C,
∴∠C=∠EAC,
∴∠C=∠1,
∴AD∥BC。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知如下图所示,在等边△ABC和等边△ADE中,点B、A、D在一条直线上,BE、CD交于F.
(1)求证:△BAE≌△CAD.
(2)求∠BFC的大小.
(3)在图1的基础上,将△ADE绕点A按顺时针方向旋转180°,此时BE交CD的延长线于点F,其他条件不变,得到图2所示的图形,请直接写出(1)、(2)中结论是否仍然成立.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

已知如下图所示,在△ABC中,AB=AC,P是△ABC内部的一点,且∠APB≠∠APC.求证PB≠PC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知如下图所示,在等边△ABC和等边△ADE中,点B、A、D在一条直线上,BE、CD交于F.
(1)求证:△BAE≌△CAD.
(2)求∠BFC的大小.
(3)在图1的基础上,将△ADE绕点A按顺时针方向旋转180°,此时BE交CD的延长线于点F,其他条件不变,得到图2所示的图形,请直接写出(1)、(2)中结论是否仍然成立.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年湖北省黄石市阳新三中九年级(上)期中数学试卷(解析版) 题型:解答题

已知如下图所示,在等边△ABC和等边△ADE中,点B、A、D在一条直线上,BE、CD交于F.
(1)求证:△BAE≌△CAD.
(2)求∠BFC的大小.
(3)在图1的基础上,将△ADE绕点A按顺时针方向旋转180°,此时BE交CD的延长线于点F,其他条件不变,得到图2所示的图形,请直接写出(1)、(2)中结论是否仍然成立.

查看答案和解析>>

同步练习册答案