精英家教网 > 初中数学 > 题目详情
(2011•裕华区一模)(1)如图1,已知△ABC中,∠C=90°,AC=BC,点C在直线l上,过点A作AE⊥l于E,BF⊥l于F,则线段CE与BF的数量关系是
CE=BF
CE=BF

(2)如图2,分别以AB、AC为一边向△ABC外作正方形ABGE和ACHF,直线AN⊥BC于N,若EP⊥AN于P,FQ⊥AN于Q,判断线段EP、FQ之间的数量关系,并说明;
(3)如图3,分别以AB、AC为一边向△ABC外作矩形ABGE和ACHF,线AN⊥BC于N,若EP⊥AN于P,FQ⊥AN于Q,如果GB=kAB,HC=kAC,(2)中结论还成立吗?请说明理由.
分析:(1)易证Rt△AEC≌Rt△CFB,由全等三角形的性质可以得出结论CE=BF;
(2)由条件可以证明Rt△EQA≌Rt△ANC,可以得出FQ=AN,由Rt△EPQ≌Rt△ANB可以得出EP=AN,从而得出EP=FQ;
(3)由条件可以得出Rt△FQA∽Rt△ANC,Rt△EPA∽Rt△ANB,从而证明
FQ
AN
=k
EP
AN
=k
,从而得出EP=FQ.
解答:解:(1)CE=BF.理由如下:
∵∠C=90°,
∴∠ACE+∠BCF=90°,
∵AE⊥l于E,BF⊥l于F,
∴∠AEC=∠BFC=90°,
∴∠EAC+∠ACE=90°,
∴∠EAC=∠BCF
∵AC=BC,
∴Rt△AEC≌Rt△CFB,
∴CE=BF;

(2)EP=FQ.理由如下:
∵四边形ABGE和四边形ACHF都是正方形,
∴AE=AB,AF=AC,∠BAE=∠CAF=90°,
∵AN⊥BC于N,EP⊥AN于P,FQ⊥AN于Q,
∴∠ANC=∠ANB=∠EPA=∠FQA=90°,
∴∠EAP=∠ABN,∠FAQ=∠ACN,
∴Rt△FQA≌△ANC,△EPA≌△ANB,
∴FQ=AN,EP=AN,
∴EP=FQ;

(3)(2)中结论还成立,即EP=FQ;理由如下:
同(2)一样可得∠EAP=∠ABN,∠FAQ=∠ACN,
∴Rt△FQA∽△ANC,△EPA∽△ANB,
∴FQ:AN=AF:AC,EP:AN=AE:AB,
又∵GB=kAB,HC=kAC,
∴AF:AC=AE:AB=k,
∴FQ:AN=EP:AN,
∴EP=FQ.
点评:本题考查了相似三角形的判定与性质:有两组对应角分别相等的两三角形相似;相似三角形对应边的比相等.也考查了全等三角形的判定与性质以及正方形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•裕华区一模)如图1,直角梯形ABCD中,∠A=∠B=90°,AD=AB=6cm,BC=8cm,点E从点A出发沿AD方向以1cm/s的速度向终点D运动;点F从点C出发沿CA方向以2cm/s的速度向终点A运动,当点E、点F中有一点运动到终点,另一点也随之停止.设运动时间为ts.

(1)当t为何值时,△AEF和△ACD相似?
(2)如图2,连接BF,随着点E、F的运动,四边形ABFE可能是直角梯形?若可能,请求出t的值及四边形ABFE的面积;若不能,请说明理由;
(3)当t为何值时,△AFE的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•裕华区一模)如图,已知□ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,请观察下列结论:①BE=DF;②AG=GH=HC;③EG:BG=1:2;④S△AHD=2S△AGE;⑤AG;AC=1:3.其中结论正确的有(填序号)
①②③⑤
①②③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•裕华区二模)如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学模拟考试卷(浙教版)(解析版) 题型:选择题

(2011•裕华区二模)一鞋店试销一种新款女鞋,试销期间卖出情况如下表:
型号2222.52323.52424.525
数量(双)351015832
对于这个鞋店的经理来说最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是( )
A.平均数
B.中位数
C.方差
D.众数

查看答案和解析>>

同步练习册答案