分析 (1)如图①中,结论:AF=$\sqrt{2}$AE,只要证明△AEF是等腰直角三角形即可;
(2)①如图②中,结论:AF=$\sqrt{2}$AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可;
②分两种情形a、如图③中,当AD=AC时,四边形ABFD是菱形.b、如图④中当AD=AC时,四边形ABFD是菱形.分别求解即可;
解答 解:(1)如图①中,结论:AF=$\sqrt{2}$AE.
理由:∵四边形ABFD是平行四边形,
∴AB=DF,
∵AB=AC,
∴AC=DF,
∵DE=EC,
∴AE=EF,
∵∠DEC=∠AEF=90°,
∴△AEF是等腰直角三角形,
∴AF=$\sqrt{2}$AE.
故答案为AF=$\sqrt{2}$AE.
(2)①如图②中,结论:AF=$\sqrt{2}$AE.
理由:连接EF,DF交BC于K.
∵四边形ABFD是平行四边形,
∴AB∥DF,
∴∠DKE=∠ABC=45°,
∴∠EKF=180°-∠DKE=135°,EK=ED,
∵∠ADE=180°-∠EDC=180°-45°=135°,
∴∠EKF=∠ADE,
∵∠DKC=∠C,
∴DK=DC,
∵DF=AB=AC,
∴KF=AD,
在△EKF和△EDA中,
$\left\{\begin{array}{l}{EK=ED}\\{∠EKF=∠ADE}\\{KF=AD}\end{array}\right.$,
∴△EKF≌△EDA,
∴EF=EA,∠KEF=∠AED,
∴∠FEA=∠BED=90°,
∴△AEF是等腰直角三角形,
∴AF=$\sqrt{2}$AE.
②如图③中,当AD=AC时,四边形ABFD是菱形,设AE交CD于H,易知EH=DH=CH=$\sqrt{2}$,AH=$\sqrt{(2\sqrt{5})^{2}-(\sqrt{2})^{2}}$=3$\sqrt{2}$,AE=AH+EH=4$\sqrt{2}$,
如图④中当AD=AC时,四边形ABFD是菱形,易知AE=AH-EH=3$\sqrt{2}$-$\sqrt{2}$=2$\sqrt{2}$,
综上所述,满足条件的AE的长为4$\sqrt{2}$或2$\sqrt{2}$.
点评 本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
进价(元/台) | 售价(元/台) | |
电饭煲 | 200 | 250 |
电压锅 | 160 | 200 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
进价(元/只) | 售价(元/只) | |
甲种节能灯 | 30 | 40 |
乙种节能灯 | 35 | 50 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com