【题目】已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式d=计算.
例如:求点P(﹣2,1)到直线y=x+1的距离.
解:因为直线y=x+1可变形为x﹣y+1=0,其中k=1,b=1.
所以点P(﹣2,1)到直线y=x+1的距离为d==
=
=
.
根据以上材料,求:
(1)点P(2,4)到直线y=3x﹣2的距离,并说明点P与直线的位置关系;
(2)点P(2,1)到直线y=2x﹣1的距离;
(3)已知直线y=﹣3x+1与y=﹣3x+3平行,求这两条直线的距离.
【答案】(1)见解析;(2);(3)
.
【解析】
(1)根据已知的距离公式即可求点到直线的距离,从而说明点P与直线的位置关系;
(2)根据已知的距离公式即可求解;
(3)在已知的一条直线上取一点,再根据点到直线的距离公式即可求得结论.
(1)∵点P(2,4),
∴点P到直线y=3x﹣2的距离为:d==0.
∴点P在直线y=3x﹣2上.
答:点P到直线y=3x﹣2的距离为0,点P在直线y=3x﹣2上.
(2)∵点P(2,﹣1)
∴点P到直线y=2x﹣1的距离为:d=.
答:点P到直线y=2x﹣1的距离为.
(3)在直线y=﹣3x+1任意取一点P,当x=0时,y=1.
∴P(0,1).
∴点P到直线y=﹣3x+3的距离为:d=.
答:两平行线之间的距离为.
科目:初中数学 来源: 题型:
【题目】如图,在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C、D.
(1)求证AC=BD;
(2)若AC=3,大圆和小圆的半径分别为6和4,则CD的长度是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)当t=2时,点D的坐标是 ;
(2)请用含t的代数式表示出点D的坐标 ;
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=72°,将△ABC绕点B按逆时针方向旋转得到△BDE(点D与点 A是对应点,点E与点C是对应点),且边DE恰好经过点C,则∠ABD的度数为
A. 36° B. 40° C. 45° D. 50°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点C,D分别在反比例函数y=(x>0).y=
(x>0)的图象上,顶点A,B在x轴上,连接OC,交DA于点E,则
=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:
(1)未降价之前,某商场衬衫的总盈利为 元.
(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利 元,平均每天可售出 件(用含x的代数式进行表示)
(3)请列出方程,求出x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的
与
的部分对应值如表:
0 | 2 | 3 | 4 | ||
5 | 0 | 0 |
下列结论:①抛物线的开口向上;②抛物线的对称轴为直线;③当
时,
;④3是方程
的一个根;⑤若
,
是抛物线上两点,则
,其中正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.
(2)求取出的两张卡片上的数字之和为偶数的概率P.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com