精英家教网 > 初中数学 > 题目详情
9.如图,?ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,求AB的长.

分析 由?ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.

解答 解:∵四边形ABCD是平行四边形,
∴AD∥BC,AB=CD,AD=BC,
∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,
∵BE,CE分别是∠ABC和∠BCD的平分线,
∴∠ABE=∠CBE=$\frac{1}{2}$∠ABC,∠DCE=∠BCE=$\frac{1}{2}$∠DCB,
∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,
∴AB=AE,CD=DE,
∴AD=BC=2AB,
∵BE=4,CE=3,
∴BC=$\sqrt{B{E}^{2}+C{E}^{2}}$=5,
∴AB=$\frac{1}{2}$BC=2.5.

点评 此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.四边形ABCD内部存在一点P,使得ABPD为平行四边形.求证:若∠CBP=∠CDP,则∠ACD=∠BCP,反之亦然.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.山西陈醋是山西省的汉族传统名产,属于中国四大名醋之一,它的生产至今已有3000余年的历史,素有“天下第一醋”的盛誉,山西老陈醋以色、香、醇、浓、酸五大象征著称于世.世袭传统京酿工艺,精选优良作原料,这个生产过程经历“蒸、酿、熏、淋”和“晒”五个步骤.无任何化学催化剂,现有一传统手工酿醋作坊计划生产A,B两种品质的醋共10缸,需购买甲、乙两种粮食,已知一下信息:

解答下列问题:
(1)现作坊计划用于甲、乙两种粮食资金不超过7500元,问符合条件的生产方案有哪几种?
(2)在(1)的条件下,若生产一缸A品质的醋需加工费200元,生产B品质的醋需加工费300元,应选择哪种生产方案,使生产这10缸醋的成本最低,最低成本为多少?(成本=材料费+加工费)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,直线y=-2x+12与x轴、y轴交于A、B两点,点C是线段AB的中点,点D在线段OC上,OD=2CD.
(1)点C的坐标为(3,6);
(2)求直线AD的解析式;
(3)P是直线AD上的点,在平面内是否存在点Q,使以为O、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.
(1)请用两种不同的方法求图2中阴影部分的面积:
方法1:(a+b)2-4ab;
方法2:(a-b)2
(2)根据(1)的结果,请你写出(a+b)2、(a-b)2、ab之间的等量关系是(a+b)2-4ab=(a-b)2
(3)根据(2)题中的等量关系,解决如下问题:a+b=$\sqrt{7}$,a-b=$\sqrt{2}$,求ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空
证明:延长CB到G,使BG=DE,连接AG,
∵四边形ABCD为正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四边形ABCD为正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即GAF=∠EAF.
又AG=AE,AF=AF,
∴△GAF≌△EAF.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.

变化:在图①中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系相等;
(2)方法迁移:
如图②,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=$\frac{1}{2}$∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想DF,BE,EF之间有何数量关系,并证明你的猜想.试猜想AM与AB之间的数量关系.并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足$∠EAF=\frac{1}{2}∠DAB$,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).猜想:∠B与∠D满足关系:∠B+∠D=180°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.请阅读下面的材料,并回答所提出的问题.
三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.
已知:如图1,△ABC中,AD是角平分线,求证:$\frac{BD}{DC}=\frac{AB}{AC}$
分析:要证$\frac{BD}{DC}=\frac{AB}{AC}$,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在的三角形相似.现在B、D、C在一直线上,△ABD与△ADC不相似,需要考虑用别的方法换比.
在比例式$\frac{BD}{DC}=\frac{AB}{AC}$中,AC恰是BD、DC、AB的第四比例项,所以考虑过C作CE∥AD,交BA的延长线于E,从而得到BD、DC、AB的第四比例项AE,这样,证明$\frac{BD}{DC}=\frac{AB}{AC}$就可以转化为证AE=AC.
(1)证明:过C作CE∥DA,交BA的延长线于E.(完成以下证明过程)
∴AE=AC(等腰三角形的判定定理)
∴△BAD∽△BEC,∴$\frac{BD}{BC}=\frac{AB}{BE}$(相似三角形的性质)∴$\frac{BD}{DC}=\frac{AB}{AC}$
(2)用三角形内角平分线性质定理解答问题:
已知:如图2,△ABC中,AD是角平分线,AB=5cm,AC=4cm,BC=7cm.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列根式中,最简二次根式是(  )
A.$\sqrt{25a}$B.$\sqrt{0.5}$C.$\sqrt{\frac{a}{2}}$D.$\sqrt{{a^2}+{b^2}}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.若不等式组$\left\{\begin{array}{l}{x>2}\\{x>m}\end{array}\right.$的解集是x>2,则m的取值范围是(  )
A.m>2B.m≥2C.m<2D.m≤2

查看答案和解析>>

同步练习册答案