精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是

【答案】
【解析】解:∵四边形ABCD为矩形, ∴∠A=90°,
在Rt△ABD中,AB=4,AD=3,
∴BD= =5,
∵折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,
∴DA′=DA=3,EA′=EA,∠DA′E=∠A=90°,
∴BA′=BD﹣DA′=5﹣3=2,
设A′E=x,则EA=x,BE=4﹣x,
在Rt△BEA′中,
∵A′E2+BA′2=BE2
∴x2+22=(4﹣x)2 , 解得x=
即A′E的长为
故答案为
由矩形的性质得∠A=90°,在Rt△ABD中,根据勾股定理计算出BD=5,再根据折叠的性质得DA′=DA=3,EA′=EA,∠DA′E=∠A=90°,则BA′=BD﹣DA′=2,设A′E=x,则EA=x,BE=4﹣x,在Rt△BEA′中,根据勾股定理得到x2+22=(4﹣x)2 , 然后解方程即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知实数a、b、c满足a+b=ab=c,有下列结论:
①若c≠0,则+=1; ②若a=3,则b+c=9; ③若a=b=c,则abc=0; ④若a、b、c中只有两个数相等,则a+b+c=8.
其中正确的是   (把所有正确结论的序号都选上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC的顶点B在反比例函数 的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是(
A.12
B.4
C.12-3
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在直角三角形ABC中,∠BAC=90°,ADBC于点D,可知:∠BAD=C(不需要证明);

(1)如图②MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,CFAE于点F,BDAE于点D.求证:△ABD≌△CAF;

(2)如图③,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、2分别是△ABE与△CAF的外角.已知AB=AC,1=2=BAC.求证:△ABE≌△CAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】去年6月某日自治区部分市、县的最高气温(℃)如下表:

区县

吐鲁番

塔城

和田

伊宁

库尔勒

阿克苏

昌吉

呼图壁

鄯善

哈密

气温(℃)

33

32

32

30

30

29

29

31

30

28

则这10个市、县该日最高气温的众数和中位数分别是(
A.32,32
B.32,30
C.30,30
D.30,32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,RtABCRtA'B'C',AB=A'B',AC=A'C',C=C'=90°.

求证:RtABCRtA'B'C'全等.

(1)请你用如果…,那么…”的形式叙述上述命题;

(2)ABCA'B'C'拼在一起,请你画出两种拼接图形;例如图2:(即使点A与点A'重合,C与点C'重合.)

(3)请你选择你拼成的其中一种图形,证明该命题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCAB=AC,∠BAC=90°,PBC上的一动点AP=AQ,∠PAQ=90°,连接CQ

(1)求证:CQBC

(2)△ACQ能否是直角三角形若能请直接写出此时点P的位置;若不能请说明理由.

(3)当点PBC上什么位置时,△ACQ是等腰三角形请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是(

成绩(分)

70

80

90

男生(人)

5

10

7

女生(人)

4

13

4


A.男生的平均成绩大于女生的平均成绩
B.男生的平均成绩小于女生的平均成绩
C.男生成绩的中位数大于女生成绩的中位数
D.男生成绩的中位数小于女生成绩的中位数

查看答案和解析>>

同步练习册答案